Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep 25;260(21):11635-42.

Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca2+-linked hormones vasopressin and angiotensin II

  • PMID: 2995343
Free article

Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca2+-linked hormones vasopressin and angiotensin II

J P Mauger et al. J Biol Chem. .
Free article

Abstract

Glucagon was added to isolated rat hepatocytes, either alone or together with vasopressin or angiotensin II, and the effects on the initial 45Ca2+ uptake rate were investigated. Addition of glucagon alone which increased cyclic AMP content of the cells slightly increased the initial 45Ca2+ uptake rate. When glucagon was added together with vasopressin or angiotensin II--both of which when added separately increase the initial 45Ca2+ uptake rate but did not affect the cellular content of cyclic AMP--the measured initial 45Ca2+ uptake rate was larger than the sum of that seen with each hormone alone. This indicates that glucagon and Ca2+-linked hormones synergistically enhanced the Ca2+ influx in rat hepatocytes. These effects of glucagon can be mimicked by dibutyryl cyclic AMP or forskolin, suggesting that cyclic AMP augments both the resting Ca2+ and the vasopressin- or angiotensin II-stimulated influx. Measurement of the initial 45Ca2+ uptake rate as a function of the extracellular Ca2+ concentration indicated that the increase in the Ca2+ influx resulting from single or combined glucagon and vasopressin administration occurred through a homogeneous population of Ca2+ gates. These hormones were found to raise both the apparent Km for external Ca2+ and the apparent Vmax of the Ca2+ influx. The maximal increase in these two parameters was observed when the two hormones were added together. This suggests that glucagon and vasopressin synergistically stimulate the same Ca2+ gating mechanism. The dose-response curves for the action of glucagon or vasopressin applied in the presence of increasing concentrations of vasopressin or glucagon, respectively, showed that each hormone increases the maximal response to the other without affecting its ED50. It is proposed that glucagon and the Ca2+-linked hormones control the cellular concentration of two intermediates which are both necessary to allow Ca2+ entry into the cells.

PubMed Disclaimer

LinkOut - more resources