Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Oct 5;260(22):12015-21.

Purification and initial characterization of ubiquitin from the higher plant, Avena sativa

  • PMID: 2995356
Free article

Purification and initial characterization of ubiquitin from the higher plant, Avena sativa

R D Vierstra et al. J Biol Chem. .
Free article

Abstract

Ubiquitin is a highly conserved, 76-amino acid polypeptide recently demonstrated to be involved in ATP-dependent protein degradation in mammalian cells. From immunoblot analyses with anti-human-ubiquitin antibodies we have detected the presence of free ubiquitin in green leaves, etiolated shoots, and dry seeds of the higher plant, oats (Avena sativa L.). We also find that crude oat extracts contain protease(s) that rapidly degrade both oat and human ubiquitin (t1/2 approximately 10 min at 27 degrees C). This proteolysis apparently cleaves ubiquitin at the carboxyl-terminal glycine dipeptide and results in inactivation of the molecule with respect to ligation but does not affect its mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using homogenization conditions that preclude this proteolysis (low pH and the addition of the protease inhibitor p-chloromercuribenzoate) and immunoblotting as an assay for the protein, a procedure for the purification of ubiquitin from etiolated oat shoots was developed. Characterization of purified oat ubiquitin by absorption spectra, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, radioimmunoassay with anti-human-ubiquitin antibodies, and kinetic analyses using the ubiquitin activating enzyme isolated from rabbit liver indicates that this protein is remarkably similar to the mammalian form. Small differences between the oat and human proteins have been observed by amino acid compositional analyses indicating that the two forms are not totally homologous. Immunoblotting of crude oat extracts has revealed the presence of high molecular weight proteins recognized by anti-ubiquitin antibodies that represent ubiquitin-protein conjugates formed in vivo. Taken together, these data provide evidence that higher plants contain a ubiquitin-dependent proteolytic pathway that is mechanistically identical to that present in animals.

PubMed Disclaimer

Publication types

LinkOut - more resources