Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Sep;76(3):1079-89.
doi: 10.1172/JCI112061.

Intracellular pH modulates the generation of superoxide radicals by human neutrophils

Intracellular pH modulates the generation of superoxide radicals by human neutrophils

L Simchowitz. J Clin Invest. 1985 Sep.

Abstract

The relationship of intracellular pH (pHi) to superoxide radical (O2-) generation was investigated in chemotactic factor-stimulated human neutrophils. Exposure of cells to 100 nM N-formylmethionyl-leucyl-phenylalanine (FMLP) caused activation of Na/H exchange which, in 140 mM Na medium (pH0 7.40), led to a rise in pHi from 7.22 to 7.80. This pHi change was sensitive to amiloride (apparent Ki 78 microM), an inhibitor of Na/H countertransport. The time course of the alkalinization was similar to that of FMLP-stimulated O2- production, which was complete by 5 min. In the presence of 1 mM amiloride, which nearly blocked the pHi transient elicited by FMLP, or in the absence of external Na, where intracellular acidification was observed in FMLP-stimulated cells, O2- release was still roughly 25-45% of normal. Thus, an alkalinization cannot be an obligatory requirement for O2- generation. By independently varying either pH0, pHi, or the internal or external concentrations of Na, both the direction and magnitude of the FMLP-induced pHi transients could be altered. In each instance, the amount of O2- release correlated directly with pHi and was enhanced by intracellular alkalinization. In the absence of FMLP, a rise in pHi to 7.7-7.8 by exposure of cells to 30 mM NH4Cl, 10 microM monensin (a Na/H exchanging ionophore), or after a prepulse with 18% CO2 did not result in O2- generation. Thus, these results imply that an alkalinization per se is not a sufficient trigger. Neutrophils exposed to 4 nM FMLP exhibited a threefold slower rate of alkalinization (reaching pHi approximately 7.80 by 20-30 min) as compared to that obtained with 100 nM FMLP and did not release significant amounts of O2- under normal incubation conditions. However, these cells could be induced to generate O2- when the degree of alkalinization was enhanced by internal Na depletion or by pretreatment with 18% CO2. Together, these results indicate a modulating effect of pHi on O2- production and suggest that other functional responses of neutrophils may be regulated by their pHi.

PubMed Disclaimer

References

    1. Scand J Clin Lab Invest Suppl. 1968;97:77-89 - PubMed
    1. J Lab Clin Med. 1975 Feb;85(2):337-41 - PubMed
    1. J Immunol. 1976 Jan;116(1):99-105 - PubMed
    1. Nature. 1976 Aug 19;262(5570):661-4 - PubMed
    1. J Clin Invest. 1976 Oct;58(4):989-96 - PubMed

Publication types