Evidence for a presynaptic adenylate cyclase system facilitating [3H]norepinephrine release from rat brain neocortex slices and synaptosomes
- PMID: 2995606
- PMCID: PMC6565135
- DOI: 10.1523/JNEUROSCI.05-10-02685.1985
Evidence for a presynaptic adenylate cyclase system facilitating [3H]norepinephrine release from rat brain neocortex slices and synaptosomes
Abstract
The effects of drugs known to enhance intracellular cyclic AMP levels on depolarization-induced [3H]norepinephrine release from superfused rat neocortical slices and synaptosomes were investigated. The adenylate cyclase activator forskolin, the membrane-permeating cyclic AMP analogues 8-bromo-cyclic AMP and dibutyryl cyclic AMP, as well as the phosphodiesterase inhibitors isobutylmethylxanthine and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrolidone (ZK 62771) enhanced the electrically evoked release of [3H]norepinephrine from superfused rat brain neocortex slices. 8-Bromo-cyclic GMP was without effect on the electrically evoked release. When [3H]norepinephrine release was enhanced by prolonging the electrical pulse duration from 2 msec to 10 msec, the relative inhibitory effect of the Ca2+ channel blocker Cd2+ and the relative facilitatory effect of the K+ channel blocker 4-aminopyridine remained unaffected. In striking contrast, the relative facilitatory effects of forskolin and 8-bromo-cyclic AMP were strongly reduced, whereas the effect of ZK 62771 was almost doubled. When veratrine-induced release of [3H]norepinephrine from cortex synaptosomes was examined, the facilitatory effects of forskolin, 8-bromo-cyclic AMP, and ZK 62771 were even more pronounced than in brain slices. The data strongly support the hypothesis that a presynaptic adenylate cyclase system plays a facilitatory role in the stimulus-secretion coupling process in central noradrenergic nerve terminals.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous