Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 24;12(7):7039-7047.
doi: 10.1021/acsnano.8b02739. Epub 2018 Jun 29.

Doping-Free Complementary Logic Gates Enabled by Two-Dimensional Polarity-Controllable Transistors

Affiliations
Free article

Doping-Free Complementary Logic Gates Enabled by Two-Dimensional Polarity-Controllable Transistors

Giovanni V Resta et al. ACS Nano. .
Free article

Abstract

Atomically thin two-dimensional (2D) materials belonging to transition metal dichalcogenides, due to their physical and electrical properties, are an exceptional vector for the exploration of next-generation semiconductor devices. Among them, due to the possibility of ambipolar conduction, tungsten diselenide (WSe2) provides a platform for the efficient implementation of polarity-controllable transistors. These transistors use an additional gate, named polarity gate, that, due to the electrostatic doping of the Schottky junctions, provides a device-level dynamic control of their polarity, that is, n- or p-type. Here, we experimentally demonstrate a complete doping-free standard cell library realized on WSe2 without the use of either chemical or physical doping. We show a functionally complete family of complementary logic gates (INV, NAND, NOR, 2-input XOR, 3-input XOR, and MAJ) and, due to the reconfigurable capabilities of the single devices, achieve the realization of highly expressive logic gates, such as exclusive-OR (XOR) and majority (MAJ), with fewer transistors than possible in conventional complementary metal-oxide-semiconductor logic. Our work shows a path to enable doping-free low-power electronics on 2D semiconductors, going beyond the concept of unipolar physically doped devices, while suggesting a road to achieve higher computational densities in two-dimensional electronics.

Keywords: WSe2; electrostatic doping; logic gates; polarity control; reconfigurable; standard cell library; two-dimensional semiconductor.

PubMed Disclaimer

LinkOut - more resources