Identification of nine novel loci related to hematological traits in a Japanese population
- PMID: 29958078
- PMCID: PMC6172615
- DOI: 10.1152/physiolgenomics.00088.2017
Identification of nine novel loci related to hematological traits in a Japanese population
Abstract
Recent genome-wide association studies have identified various genetic variants associated with hematological traits. Although it is possible that quantitative data of hematological traits are varied among the years examined, conventional genome-wide association studies have been conducted in a cross-sectional manner that measures traits at a single point in time. To address this issue, we have traced blood profiles in 4,884 Japanese individuals who underwent annual health check-ups for several years. In the present study, longitudinal exome-wide association studies were conducted to identify genetic variants related to 13 hematological phenotypes. The generalized estimating equation model showed that a total of 67 single nucleotide polymorphisms (SNPs) were significantly [false discovery rate (FDR) of <0.01] associated with hematological phenotypes. Of the 67 SNPs, nine SNPs were identified as novel hematological markers: rs4686683 of SENP2 for red blood cell count (FDR = 0.008, P = 5.5 × 10-6); rs3917688 of SELP for mean corpuscular volume (FDR = 0.005, P = 2.4 × 10-6); rs3133745 of C8orf37-AS1 for white blood cell count (FDR = 0.003, P = 1.3 × 10-6); rs13121954 at 4q31.2 for basophil count (FDR = 0.007, P = 3.1 × 10-5); rs7584099 at 2q22.3 (FDR = 2.6 × 10-5, P = 8.8 × 10-8), rs1579219 of HCG17 (FDR = 0.003, P = 2.0 × 10-5), and rs10757049 of DENND4C (FDR = 0.008, P = 5.6 × 10-5) for eosinophil count; rs12338 of CTSB for neutrophil count (FDR = 0.007, P = 2.9 × 10-5); and rs395967 of OSMR-AS1 for monocyte count (FDR = 0.008, P = 3.2 × 10-5).
Keywords: exome-wide association study; generalized estimating equation; hematological trait; linkage disequilibrium; longitudinal data.
Figures






References
-
- Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen-Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O’Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, van der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo-de-Santa-Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167: 1415–1429.e19, 2016. doi:10.1016/j.cell.2016.10.042. - DOI - PMC - PubMed
-
- Auer PL, Teumer A, Schick U, O’Shaughnessy A, Lo KS, Chami N, Carlson C, de Denus S, Dubé M-P, Haessler J, Jackson RD, Kooperberg C, Perreault L-PL, Nauck M, Peters U, Rioux JD, Schmidt F, Turcot V, Völker U, Völzke H, Greinacher A, Hsu L, Tardif J-C, Diaz GA, Reiner AP, Lettre G. Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat Genet 46: 629–634, 2014. doi:10.1038/ng.2962. - DOI - PMC - PubMed
-
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300, 1995.
-
- Chami N, Chen MH, Slater AJ, Eicher JD, Evangelou E, Tajuddin SM, Love-Gregory L, Kacprowski T, Schick UM, Nomura A, Giri A, Lessard S, Brody JA, Schurmann C, Pankratz N, Yanek LR, Manichaikul A, Pazoki R, Mihailov E, Hill WD, Raffield LM, Burt A, Bartz TM, Becker DM, Becker LC, Boerwinkle E, Bork-Jensen J, Bottinger EP, O’Donoghue ML, Crosslin DR, de Denus S, Dubé MP, Elliott P, Engström G, Evans MK, Floyd JS, Fornage M, Gao H, Greinacher A, Gudnason V, Hansen T, Harris TB, Hayward C, Hernesniemi J, Highland HM, Hirschhorn JN, Hofman A, Irvin MR, Kähönen M, Lange E, Launer LJ, Lehtimäki T, Li J, Liewald DCM, Linneberg A, Liu Y, Lu Y, Lyytikäinen LP, Mägi R, Mathias RA, Melander O, Metspalu A, Mononen N, Nalls MA, Nickerson DA, Nikus K, O’Donnell CJ, Orho-Melander M, Pedersen O, Petersmann A, Polfus L, Psaty BM, Raitakari OT, Raitoharju E, Richard M, Rice KM, Rivadeneira F, Rotter JI, Schmidt F, Smith AV, Starr JM, Taylor KD, Teumer A, Thuesen BH, Torstenson ES, Tracy RP, Tzoulaki I, Zakai NA, Vacchi-Suzzi C, van Duijn CM, van Rooij FJ, Cushman M, Deary IJ, Velez Edwards DR, Vergnaud AC, Wallentin L, Waterworth DM, White HD, Wilson JG, Zonderman AB, Kathiresan S, Grarup N, Esko T, Loos RJ, Lange LA, Faraday N, Abumrad NA, Edwards TL, Ganesh SK, Auer PL, Johnson AD, Reiner AP, Lettre G. Exome genotyping identifies pleiotropic variants associated with red blood cell traits. Am J Hum Genet 99: 8–21, 2016. doi:10.1016/j.ajhg.2016.05.007. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous