Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jun 30;5(1):20.
doi: 10.1186/s40779-018-0167-4.

Biological effects of radiation on cancer cells

Affiliations
Review

Biological effects of radiation on cancer cells

Jin-Song Wang et al. Mil Med Res. .

Abstract

With the development of radiotherapeutic oncology, computer technology and medical imaging technology, radiation therapy has made great progress. Research on the impact and the specific mechanism of radiation on tumors has become a central topic in cancer therapy. According to the traditional view, radiation can directly affect the structure of the DNA double helix, which in turn activates DNA damage sensors to induce apoptosis, necrosis, and aging or affects normal mitosis events and ultimately rewires various biological characteristics of neoplasm cells. In addition, irradiation damages subcellular structures, such as the cytoplasmic membrane, endoplasmic reticulum, ribosome, mitochondria, and lysosome of cancer cells to regulate various biological activities of tumor cells. Recent studies have shown that radiation can also change the tumor cell phenotype, immunogenicity and microenvironment, thereby globally altering the biological behavior of cancer cells. In this review, we focus on the effects of therapeutic radiation on the biological features of tumor cells to provide a theoretical basis for combinational therapy and inaugurate a new era in oncology.

Keywords: Biological features; Cancer cells; Combinational therapy; Radiation.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Similar articles

Cited by

References

    1. Denis V, Couturier AM, Tedim FM, Amélie R, Poirier GG, Fabrice F, et al. DNA damage signalling and repair inhibitors: the long-sought-after Achilles’ heel of cancer. Biomol Ther. 2015;5(4):3204–3259. - PMC - PubMed
    1. Lewanski CR, Gullick WJ. Radiotherapy and cellular signalling. Lancet Oncol. 2001;2(6):366–370. doi: 10.1016/S1470-2045(00)00391-0. - DOI - PubMed
    1. Edimecheva IP, Kisel MA, Shadyro OI, Vlasov AP, Yurkova IL. The damage to phospholipids caused by free radical attack on glycerol and sphingosine backbone. Int J Radiat Biol. 1997;71(5):555–560. doi: 10.1080/095530097143888. - DOI - PubMed
    1. Shao C, Folkard M, Michael BD, Prise KM. Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci U S A. 2004;101(37):13495–13500. doi: 10.1073/pnas.0404930101. - DOI - PMC - PubMed
    1. Pilones KA, Vanpouille-Box C, Demaria S. Combination of radiotherapy and immune checkpoint inhibitors. Semin Radiat Oncol. 2015;25(1):28–33. doi: 10.1016/j.semradonc.2014.07.004. - DOI - PubMed

Publication types

MeSH terms