Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 17;49(1):164-177.e6.
doi: 10.1016/j.immuni.2018.05.005. Epub 2018 Jun 26.

Virus-Induced Interferon-γ Causes Insulin Resistance in Skeletal Muscle and Derails Glycemic Control in Obesity

Affiliations
Free article

Virus-Induced Interferon-γ Causes Insulin Resistance in Skeletal Muscle and Derails Glycemic Control in Obesity

Marko Šestan et al. Immunity. .
Free article

Abstract

Pro-inflammatory cytokines of a T helper-1-signature are known to promote insulin resistance (IR) in obesity, but the physiological role of this mechanism is unclear. It is also unknown whether and how viral infection induces loss of glycemic control in subjects at risk for developing diabetes mellitus type 2 (DM2). We have found in mice and humans that viral infection caused short-term systemic IR. Virally-induced interferon-γ (IFN-γ) directly targeted skeletal muscle to downregulate the insulin receptor but did not cause loss of glycemic control because of a compensatory increase of insulin production. Hyperinsulinemia enhanced antiviral immunity through direct stimulation of CD8+ effector T cell function. In pre-diabetic mice with hepatic IR caused by diet-induced obesity, infection resulted in loss of glycemic control. Thus, upon pathogen encounter, the immune system transiently reduces insulin sensitivity of skeletal muscle to induce hyperinsulinemia and promote antiviral immunity, which derails to glucose intolerance in pre-diabetic obese subjects. VIDEO ABSTRACT.

PubMed Disclaimer

Comment in

Publication types

MeSH terms