Cognitive and visual diagnostic errors in dermatology: part 1
- PMID: 29962022
- DOI: 10.1111/bjd.16932
Cognitive and visual diagnostic errors in dermatology: part 1
Abstract
Sir William Osler famously, and ironically, stated that 'Medicine is a science of uncertainty and an art of probability'. The processes by which each physician metes out diagnostic uncertainty and navigates probabilities in dermatology is far from uniform. While certain ubiquitous cognitive and visual heuristics can enhance diagnostic speed, they also create pitfalls and thinking traps that introduce significant variation in the diagnostic process. Discussed in this part of a two-part article are various cognitive and visual heuristics as they pertain to skin disease, with an introduction and special attention paid to the heuristic methods classically applied by dermatologists. How to best address error and improve our thought processes will be addressed in part 2.
© 2018 British Association of Dermatologists.
Similar articles
-
Visual perception, cognition, and error in dermatologic diagnosis: Diagnosis and error.J Am Acad Dermatol. 2019 Dec;81(6):1237-1245. doi: 10.1016/j.jaad.2018.12.072. Epub 2019 Feb 21. J Am Acad Dermatol. 2019. PMID: 30797841 Review.
-
Diagnostic heuristics in dermatology, part 2: metacognition and other fixes.Br J Dermatol. 2018 Dec;179(6):1270-1276. doi: 10.1111/bjd.17127. Epub 2018 Oct 14. Br J Dermatol. 2018. PMID: 30171684 Review.
-
Visual perception, cognition, and error in dermatologic diagnosis: Key cognitive principles.J Am Acad Dermatol. 2019 Dec;81(6):1227-1234. doi: 10.1016/j.jaad.2018.10.082. Epub 2019 Feb 21. J Am Acad Dermatol. 2019. PMID: 30797839 Review.
-
Dermatology and its unique diagnostic heuristics.J Am Acad Dermatol. 2018 Jun;78(6):1239-1240. doi: 10.1016/j.jaad.2017.11.018. Epub 2017 Nov 10. J Am Acad Dermatol. 2018. PMID: 29133237 Review. No abstract available.
-
Cognitive bias and medical errors.J Am Acad Dermatol. 2019 Dec;81(6):1249. doi: 10.1016/j.jaad.2019.06.1284. Epub 2019 Jul 3. J Am Acad Dermatol. 2019. PMID: 31279022 No abstract available.
Cited by
-
Closing the AI generalisation gap by adjusting for dermatology condition distribution differences across clinical settings.EBioMedicine. 2025 Jun;116:105766. doi: 10.1016/j.ebiom.2025.105766. Epub 2025 Jun 2. EBioMedicine. 2025. PMID: 40460693 Free PMC article.
-
The Importance of Incorporating Human Factors in the Design and Implementation of Artificial Intelligence for Skin Cancer Diagnosis in the Real World.Am J Clin Dermatol. 2021 Mar;22(2):233-242. doi: 10.1007/s40257-020-00574-4. Am J Clin Dermatol. 2021. PMID: 33354741 Review.
-
Effectiveness of blended learning versus lectures alone on ECG analysis and interpretation by medical students.BMC Med Educ. 2020 Dec 3;20(1):488. doi: 10.1186/s12909-020-02403-y. BMC Med Educ. 2020. PMID: 33272253 Free PMC article.
-
Hiding in Plain Sight: A Retrospective Review of Unrecognized Tumors During Dermatologic Surgery.Cureus. 2022 Mar 25;14(3):e23487. doi: 10.7759/cureus.23487. eCollection 2022 Mar. Cureus. 2022. PMID: 35475096 Free PMC article.
-
Identification of Challenging Diagnostic Factors in Livedoid Vasculopathy: A Retrospective Study.Clin Cosmet Investig Dermatol. 2024 Aug 2;17:1747-1756. doi: 10.2147/CCID.S466449. eCollection 2024. Clin Cosmet Investig Dermatol. 2024. PMID: 39109220 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical