Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 25;118(14):6706-6765.
doi: 10.1021/acs.chemrev.8b00233. Epub 2018 Jul 2.

Electrochemical Arylation Reaction

Affiliations

Electrochemical Arylation Reaction

Siegfried R Waldvogel et al. Chem Rev. .

Abstract

Arylated products are found in various fields of chemistry and represent essential entities for many applications. Therefore, the formation of this structural feature represents a central issue of contemporary organic synthesis. By the action of electricity the necessity of leaving groups, metal catalysts, stoichiometric oxidizers, or reducing agents can be omitted in part or even completely. The replacement of conventional reagents by sustainable electricity not only will be environmentally benign but also allows significant short cuts in electrochemical synthesis. In addition, this methodology can be considered as inherently safe. The current survey is organized in cathodic and anodic conversions as well as by the number of leaving groups being involved. In some electroconversions the reagents used are regenerated at the electrode, whereas in other electrotransformations free radical sequences are exploited to afford a highly sustainable process. The electrochemical formation of the aryl-substrate bond is discussed for aromatic substrates, heterocycles, other multiple bond systems, and even at saturated carbon substrates. This survey covers most of the seminal work and the advances of the past two decades in this area.

PubMed Disclaimer

Publication types

LinkOut - more resources