Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 20:124:454-465.
doi: 10.1016/j.freeradbiomed.2018.06.034. Epub 2018 Jun 30.

Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2

Affiliations

Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2

Junduo Wu et al. Free Radic Biol Med. .

Abstract

Oxidative stress and inflammation are major contributors to diabetes-induced endothelial dysfunction which is the critical first step to the development of diabetic macrovascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in combating diabetes-induced oxidative stress and inflammation. Sodium butyrate (NaB) is an inhibitor of histone deacetylase (HDAC) and an activator of NRF2. However, NaB's effect on diabetes-induced aortic injury was unknown. It was also not known whether or to what extent NRF2 is required for both self-defense and NaB's protection in the diabetic aorta. Additionally, the mechanism by which NaB activates NRF2 was unclear. Therefore, C57BL/6 Nrf2 knockout (KO) and wild type (WT) mice were induced to diabetes by streptozotocin, and were treated in the presence or absence of NaB, for 20 weeks. The KO diabetic mice developed more severe aortic endothelial oxidative stress, inflammation and dysfunction, as compared with the WT diabetic mice. NaB significantly attenuated these effects in the WT, but not the KO, mice. In high glucose-treated aortic endothelial cells, NaB elevated Nrf2 mRNA and protein without facilitating NRF2 nuclear translocation, an effect distinct from that of sulforaphane. NaB inhibited HDAC activity, and increased occupancy of the transcription factor aryl hydrocarbon receptor and the co-activator P300 at the Nrf2 gene promoter. Further, the P300 inhibitor C646 completely abolished NaB's efficacies. Thus, NRF2 is required for both self-defense and NaB's protection against diabetes-induced aortic endothelial dysfunction. Other findings suggest that P300 mediates the transcriptional activation of Nrf2 by NaB.

Keywords: Aorta; Diabetes; Endothelial dysfunction; Inflammation; Oxidative stress.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources