Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 8;39(6):2724-2731.
doi: 10.13227/j.hjkx.201710104.

[Distribution and Treatment of Antibiotics in Typical WWTPs in Small Towns in China]

[Article in Chinese]
Affiliations

[Distribution and Treatment of Antibiotics in Typical WWTPs in Small Towns in China]

[Article in Chinese]
Yu-Feng Chai et al. Huan Jing Ke Xue. .

Abstract

As a new, persistent pollutant in the environment, antibiotics are one of the most important pollutants in sewage treatment plants. The objective of this work was to investigate the concentration distribution and removal efficiency of antibiotics for three typical wastewater treatment technologies applied in small towns (CASS, A2/O, and Orbal oxidation ditch) using solid phase extraction-liquid chromatography-tandem mass spectrometry. Sixteen typical antibiotics, including four tetracyclines, three β-lactams, four macrolides, three quinolones, and two sulfonamides, were analyzed in the influent and effluent. In addition, the relationship between the presence of antibiotics and the basic water quality (NH4+-N, TN, COD, pH, etc.) in the WWTPs was analyzed. The results showed that ofloxacin (OFX) and norfloxacin (NOR) were the main antibiotics in the WWTPs in this study. However, the concentrations of these two antibiotics in the effluent were low, indicating effective antibiotic removal efficiency. The antibiotic removal efficiency was higher than 60% in five of the WWTPs. Compared with the A2/O process, the CASS and Orbal oxidation ditch technologies resulted in higher removals of most of the antibiotics. In addition, the CASS and A2/O processes worked best for the removal of β-lactam [ampicillin (AMP) and penicillin (PCN)], quinolones (ENR, NOR, and OFX), and macrolide (CLR), while the Orbal oxidation ditch worked best for the removal of tetracyclines (TC and OTC) and sulfonamides [sulfadiazine (SD)]. The correlation between antibiotic concentration and the basic parameters of water quality (NH4+-N, TN, COD, pH, etc.) was analyzed, and it was found that the water quality parameters had some effect on the concentration of antibiotics. With higher concentrations of the basic water quality parameters, higher the concentration of erythromycin (EM), roxithromycin (ROX), 4-epi-Tetracycline (E-TC), clarithromycin (CLR), ciprofloxacin (CIP), ofloxacin (OFX), epioxytetracycline (E-OTC), tetracyclines (TC), oxytetracycline (OTC), and norfloxacin (NOR) were observed. In summary, it is important to ensure the stable operation of small town WWTPs to reduce the ecological risk of antibiotics.

Keywords: SPE-LC-MS/MS; WWTP; antibiotics in wastewater; distribution of antibiotics; influent and effluent; small town.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources