Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct;34(3):649-659.
doi: 10.1007/s12640-018-9927-x. Epub 2018 Jul 2.

Long-Term Neurobehavioral Consequences of a Single Ketamine Neonatal Exposure in Rats: Effects on Cellular Viability and Glutamate Transport in Frontal Cortex and Hippocampus

Affiliations

Long-Term Neurobehavioral Consequences of a Single Ketamine Neonatal Exposure in Rats: Effects on Cellular Viability and Glutamate Transport in Frontal Cortex and Hippocampus

Tuane Bazanella Sampaio et al. Neurotox Res. 2018 Oct.

Abstract

The neonatal exposure to general anesthetics has been associated with neuronal apoptosis and dendritic spines morphologic changes in the developing brain. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated short- and long-term effects of a single ketamine (20 mg/kg, s.c.) neonatal exposure at postnatal day 7 in rats on the hippocampal and frontal cortical cellular viability. Additionally, putative neurochemical alterations and neurobehavioral impairments were evaluated in the adulthood. Ketamine neonatal administration selectively decreased cellular viability in the hippocampus, but not in the frontal cortex, 24 h after the treatment. Interestingly, a single ketamine neonatal exposure prevented the vulnerability to glutamate-induced neurotoxicity in the frontal cortex of adult rats. No short- or long-term damage to cellular membranes, as an indicative of cell death, was observed in hippocampal or cortical slices. However, ketamine induced a long-term increase in hippocampal glutamate uptake. Regarding behavioral analysis, neonatal ketamine exposure did not alter locomotor activity and anxiety-related parameters evaluated in the open-field test. However, ketamine administration disrupted the hippocampal-dependent object recognition ability of adult rats, while improved the motor coordination addressed on the rotarod. These findings indicate that a single neonatal ketamine exposure induces a short-term reduction in the hippocampal, but not in cortical, cellular viability, and long-term alterations in hippocampal glutamate transport, improvement on motor performance, and short-term recognition memory impairment.

Keywords: Glutamatergic neurotransmission; Ketamine; Locomotor activity; Memory; Neonatal.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurochem. 2013 Aug;126(4):437-50 - PubMed
    1. Neurotox Res. 2003;5(7):549-64 - PubMed
    1. Environ Health Perspect. 2000 Jun;108 Suppl 3:383-8 - PubMed
    1. Neurotox Res. 2004;6(6):435-56 - PubMed
    1. Br J Pharmacol. 2005 Sep;146(2):189-97 - PubMed

LinkOut - more resources