Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;37(7):1711-1722.
doi: 10.1109/TMI.2018.2798500.

Ordinal Pattern: A New Descriptor for Brain Connectivity Networks

Ordinal Pattern: A New Descriptor for Brain Connectivity Networks

Daoqiang Zhang et al. IEEE Trans Med Imaging. 2018 Jul.

Abstract

Brain connectivity networks based on magnetic resonance imaging (MRI) or functional MRI (fMRI) data provide a straightforward way to quantify the structural or functional systems of the brain. Currently, there are several network descriptors developed for representing and analyzing brain connectivity networks. However, most of them are designed for unweighted networks, regardless of the valuable weight information of edges, or do not take advantage of the ordinal relationship of weighted edges (even though they are designed for weighted networks). In this paper, we propose a new network descriptor (i.e., ordinal pattern that contains a sequence of weighted edges) for brain connectivity network analysis. Compared with previous network properties, the proposed ordinal patterns cannot only take advantage of the weight information of edges but also explicitly model the ordinal relationship of weighted edges in brain connectivity networks. We further develop an ordinal pattern-based learning framework for brain disease diagnosis using resting-state fMRI data. Specifically, we first construct a set of brain functional connectivity networks, where each network is corresponding to a particular subject. We then develop an algorithm to identify ordinal patterns that frequently appear in brain connectivity networks of patients and normal controls. We further perform discriminative ordinal pattern selection and extract feature representations for subjects based on the selected ordinal patterns, followed by a learning model for automated brain disease diagnosis. Experimental results on both Alzheimer's Disease Neuroimaging Initiative and attention deficit hyperactivity disorder-200 data sets demonstrate that our method outperforms the several state-of-the-art approaches in the tasks of disease classification and clinical score regression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources