Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 3;15(7):e1002599.
doi: 10.1371/journal.pmed.1002599. eCollection 2018 Jul.

Air-quality-related health impacts from climate change and from adaptation of cooling demand for buildings in the eastern United States: An interdisciplinary modeling study

Affiliations

Air-quality-related health impacts from climate change and from adaptation of cooling demand for buildings in the eastern United States: An interdisciplinary modeling study

David W Abel et al. PLoS Med. .

Abstract

Background: Climate change negatively impacts human health through heat stress and exposure to worsened air pollution, amongst other pathways. Indoor use of air conditioning can be an effective strategy to reduce heat exposure. However, increased air conditioning use increases emissions of air pollutants from power plants, in turn worsening air quality and human health impacts. We used an interdisciplinary linked model system to quantify the impacts of heat-driven adaptation through building cooling demand on air-quality-related health outcomes in a representative mid-century climate scenario.

Methods and findings: We used a modeling system that included downscaling historical and future climate data with the Weather Research and Forecasting (WRF) model, simulating building electricity demand using the Regional Building Energy Simulation System (RBESS), simulating power sector production and emissions using MyPower, simulating ambient air quality using the Community Multiscale Air Quality (CMAQ) model, and calculating the incidence of adverse health outcomes using the Environmental Benefits Mapping and Analysis Program (BenMAP). We performed simulations for a representative present-day climate scenario and 2 representative mid-century climate scenarios, with and without exacerbated power sector emissions from adaptation in building energy use. We find that by mid-century, climate change alone can increase fine particulate matter (PM2.5) concentrations by 58.6% (2.50 μg/m3) and ozone (O3) by 14.9% (8.06 parts per billion by volume [ppbv]) for the month of July. A larger change is found when comparing the present day to the combined impact of climate change and increased building energy use, where PM2.5 increases 61.1% (2.60 μg/m3) and O3 increases 15.9% (8.64 ppbv). Therefore, 3.8% of the total increase in PM2.5 and 6.7% of the total increase in O3 is attributable to adaptive behavior (extra air conditioning use). Health impacts assessment finds that for a mid-century climate change scenario (with adaptation), annual PM2.5-related adult mortality increases by 13,547 deaths (14 concentration-response functions with mean incidence range of 1,320 to 26,481, approximately US$126 billion cost) and annual O3-related adult mortality increases by 3,514 deaths (3 functions with mean incidence range of 2,175 to 4,920, approximately US$32.5 billion cost), calculated as a 3-month summer estimate based on July modeling. Air conditioning adaptation accounts for 654 (range of 87 to 1,245) of the PM2.5-related deaths (approximately US$6 billion cost, a 4.8% increase above climate change impacts alone) and 315 (range of 198 to 438) of the O3-related deaths (approximately US$3 billion cost, an 8.7% increase above climate change impacts alone). Limitations of this study include modeling only a single month, based on 1 model-year of future climate simulations. As a result, we do not project the future, but rather describe the potential damages from interactions arising between climate, energy use, and air quality.

Conclusions: This study examines the contribution of future air-pollution-related health damages that are caused by the power sector through heat-driven air conditioning adaptation in buildings. Results show that without intervention, approximately 5%-9% of exacerbated air-pollution-related mortality will be due to increases in power sector emissions from heat-driven building electricity demand. This analysis highlights the need for cleaner energy sources, energy efficiency, and energy conservation to meet our growing dependence on building cooling systems and simultaneously mitigate climate change.

PubMed Disclaimer

Conflict of interest statement

I have read the journal’s policy and the authors of this manuscript have the following competing interests: PM has an ownership interest in the MyPower model used to generate power plant emissions estimates for this study. The data from this study are publicly available. JAP served as a Guest Editor on PLOS Medicine's Special Issue on Climate Change and Health.

Figures

Fig 1
Fig 1. A visual representation of the methods used in this study.
Fig 2
Fig 2. A histogram of regional average hourly temperatures.
A histogram of regional average hourly temperatures is presented for July in the present-day and in the warm mid-century climate. Present-day mean: 25.6 °C; minimum: 19.1 °C; maximum: 32.4 °C. Mid-century mean: 29.1 °C; minimum: 18.3 °C; maximum: 38.5 °C.
Fig 3
Fig 3. Histograms of hourly electricity production and emissions.
Histograms are provided for regionally summed hourly electricity production, CO2 emissions, nitrogen oxide (NOX) emissions, and SO2 emissions for July in the present-day and warm mid-century warm climate scenarios. For electricity production: present-day mean: 212.9 GWh; minimum: 120.4; maximum: 320.3. Mid-century mean: 274.2 GWh; minimum: 172.0; maximum: 438.0. For CO2 emissions: present-day mean: 168,800 tonnes; minimum: 99,800; maximum: 238,800. Mid-century mean: 200,100 tonnes; minimum: 132,700; maximum: 276,500. For NOX emissions: present-day mean: 140 tonnes; minimum: 80; maximum: 210. Mid-century mean: 160 tonnes; minimum: 100; maximum: 210. For SO2 emissions: present-day mean: 430 tonnes; minimum: 250; maximum: 610. Mid-century mean: 500 tonnes; minimum: 300; maximum: 590.
Fig 4
Fig 4. Change in ambient air pollution concentrations.
Maps of the percentage change in (a) PM2.5 and (b) O3 from the warm mid-century climate-only (MCCO) scenario to the warm mid-century adaptation (MCA) scenario. Red shows concentrations that are greater in the MCA scenario compared to MCCO, while blue shows a decrease in concentrations compared to MCCO. Axes show latitude and longitude.
Fig 5
Fig 5. Change in emissions by state.
The state by state changes in nitrogen oxide (NOX) and SO2 emissions from the present-day (PD) to mid-century (MC) as an absolute value (designated by the bars) and as a percentage (as listed).
Fig 6
Fig 6. Histograms of ambient air pollutant concentrations.
Histograms of regional average hourly concentrations of PM2.5 (μg/m3) and O3 (parts per billion by volume [ppbv]) for July in the present-day (PD) scenario, the warm mid-century climate-only (MCCO) scenario, and the warm mid-century adaptation (MCA) scenario. For PM2.5 concentrations: PD mean: 4.19 μg/m3; minimum: 2.91; maximum: 5.98. MCCO mean: 6.57 μg/m3; minimum: 4.37; maximum: 8.75. MCA mean: 6.67 μg/m3; minimum: 4.48; maximum: 8.87. For O3 concentrations: PD mean: 43.4 ppbv; minimum: 23.6; maximum: 61.7. MCCO mean: 48.0 ppbv; minimum: 26.4; maximum: 70.2. MCA mean: 48.4 ppbv; minimum: 26.6; maximum: 70.9.
Fig 7
Fig 7. The mortality impacts of adaptation due to air pollution.
Shown is the air-pollution-related mortality increase due to adaptation (the mid-century adaptation scenario minus the mid-century climate-only scenario) for (a) PM2.5 as taken from the Expert F concentration–response function (the median function), (b) O3 based on Levy et al. [97] using maximum daily 1-hour concentrations, and (c) O3 based on Levy et al. [97] using maximum daily 8-hour average concentrations.

Similar articles

Cited by

References

    1. Patz JA, Frumkin H, Holloway T, Vimont DJ, Haines A. Climate change: challenges and opportunities for global health. JAMA. 2014;312:1565–80. doi: 10.1001/jama.2014.13186 - DOI - PMC - PubMed
    1. Watts N, Amann M, Ayeb-Karlsson S, Belesova K, Bouley T, Boykoff M, et al. The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet. 2018;391(10120):581–630. doi: 10.1016/S0140-6736(17)32464-9 - DOI - PubMed
    1. Constable JVH, Guenther AB, Schimel DS, Monson RK. Modelling changes in VOC emission in response to climate change in the continental United States. Glob Change Biol. 1999;5:791–806. doi: 10.1046/j.1365-2486.1999.00273.x - DOI
    1. Guenther A. Seasonal and spatial variations in natural volatile organic compound emissions. Ecol Appl. 1997;7:34–45.
    1. Sillman S, Samson PJ. Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. J Geophys Res. 1995;100:11497–508. doi: 10.1029/94JD02146 - DOI

Publication types

MeSH terms