Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Nov 25;260(27):14642-7.

Self-phosphorylation enhances the protein-tyrosine kinase activity of the epidermal growth factor receptor

  • PMID: 2997217
Free article

Self-phosphorylation enhances the protein-tyrosine kinase activity of the epidermal growth factor receptor

P J Bertics et al. J Biol Chem. .
Free article

Abstract

The effect of self-phosphorylation on the protein-tyrosine kinase activity of the epidermal growth factor receptor has been investigated using immunoaffinity-purified protein. Enzyme was first incubated for various times with excess ATP to phosphorylate it to differing extents; the ability of the enzyme to phosphorylate exogenous peptide substrates was then measured as a function of its self-phosphorylation state. Increasing self-phosphorylation to 1.3-1.8 mol of phosphate mol-1 of epidermal growth factor receptor enhanced protein-tyrosine kinase activity 2-3-fold. Comparison of the kinetics of protein-tyrosine kinase activity at different ATP concentrations revealed significant differences between unphosphorylated and phosphorylated enzyme. At low levels of ATP, a double reciprocal plot of the protein-tyrosine kinase activity of the unphosphorylated enzyme was hyperbolic, suggesting that ATP may act as an activator of the enzyme. At higher ATP concentrations, where greater levels of self-phosphorylation occurred during the reaction, the kinetics appeared linear and similar to those of the phosphorylated enzyme. Dose-response studies using three different peptide substrates (angiotensin II, gastrin, and a synthetic peptide corresponding to the self-phosphorylation site in p60v-src) showed that exogenous substrates inhibit receptor self-phosphorylation. In each case, half-maximal inhibition was observed at a peptide concentration approximately equal to the substrate's Km. A kinetic analysis comparing peptide phosphorylation using unphosphorylated and prephosphorylated enzyme indicated that the self-phosphorylation site can act as a competitive inhibitor (alternate substrate) versus peptide substrates. These results suggest that self-phosphorylation of the epidermal growth factor receptor removes a competitive constraint so that exogenous substrates can be more readily phosphorylated.

PubMed Disclaimer

Publication types

LinkOut - more resources