Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jun;62(3):352-361.
doi: 10.20945/2359-3997000000049.

An update of genetic basis of PCOS pathogenesis

Affiliations
Review

An update of genetic basis of PCOS pathogenesis

Raiane P Crespo et al. Arch Endocrinol Metab. 2018 Jun.

Abstract

Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder that affects 5-20% of reproductive age women. PCOS clinical symptoms include hirsutism, menstrual dysfunction, infertility, obesity and metabolic syndrome. There is a wide heterogeneity in clinical manifestations and metabolic complications. The pathogenesis of PCOS is not fully elucidated, but four aspects seem to contribute to the syndrome to different degrees: increased ovarian and/or adrenal androgen secretion, partial folliculogenesis arrest, insulin resistance and neuroendocrine axis dysfunction. A definitive etiology remains to be elucidated, but PCOS has a strong heritable component indicated by familial clustering and twin studies. Genome Wide Association Studies (GWAS) have identified several new risk loci and candidate genes for PCOS. Despite these findings, the association studies have explained less than 10% of heritability. Therefore, we could speculate that different phenotypes and subphenotypes are caused by rare private genetic variants. Modern genetic studies, such as whole exome and genome sequencing, will help to clarify the contribution of these rare genetic variants on different PCOS phenotypes. Arch Endocrinol Metab. 2018;62(3):352-61.

PubMed Disclaimer

Conflict of interest statement

Disclosure: no potential conflict of interest relevant to this article was reported.

Figures

Figure 1
Figure 1. Ovarian steroidogenesis. (A) Normal ovarian steroid synthesis. (B) PCOS ovarian steroid synthesis. In comparison to normal theca cells, PCOS theca cells show increased expression of LH receptor and increased expression of CYP17A1 gene, leading to enhance of 17α-hydroxylase and 17,20-lyase activity, and amplifying androgen synthesis. Exogenous factors, such as hyperinsulinemia and IGFs are modulatory hormones that can disrupt normal intra-ovarian regulatation of steroidogenesis.
Figure 2
Figure 2. Role of AMH in folliculogenesis. AMH has an inibitory effect on initial recruitment of primary follicles, on FSH-dependent follicular maturation and selection of dominant follicle, and on FSH-induced aromatase expression on granulosa cells, reducing the conversion of testosterone into estradiol. Higher AMH levels in PCOS patients turns the follicles more resistant to FSH action, culminating in inhibition of follicular maturarion and ovulation, and in inhibiton of aromatase expression, and consequently, leading to hyperandrogenism. Adapted from Azziz and cols. 2016 (1).
Figure 3
Figure 3. Schematic components of PCOS pathogenesis. Four main physiologic mechanisms contribute to PCOS pathogenesis: hyperandrogenism (HY), insulin resistance (IR), folliculogenesis dysfunction (FC), and neuroendocrine axis dysfunction (ND). These mechanisms contribute to each phenotype in different degrees. The classical phenotype shows alterations in all four mechanism, being HY and IR the main ones (A). In the ovulatory phenotype, HY and ND predominate and folliculogenesis seems not compromised (B). In contrast, in the normoandrogenic phenotype, FC seems to play the most important role in the pathogenesis, while HY is not present (C).

Similar articles

Cited by

References

    1. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. - PubMed
    1. Gunning MN, Fauser BCJM. Are women with polycystic ovary syndrome at increased cardiovascular disease risk later in life? Climacteric. 2017;20(3):222-7. - PubMed
    1. JK Z. Diagnostic criteria of polycystic ovary syndrome; towards a rational approach. In: Dunaif A, ditor. Polycystic Ovary Syndrome ed. Boston, MA: Blackwell Scientific; 1992.
    1. Group REA-SPCW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19-25. - PubMed
    1. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006;91(11):4237-45. - PubMed

LinkOut - more resources