Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 4;19(1):520.
doi: 10.1186/s12864-018-4893-5.

The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae)

Affiliations

The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae)

Maarten P M Vanhove et al. BMC Genomics. .

Abstract

Background: Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective.

Results: Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly 'primitive' African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines.

Conclusions: The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available.

Keywords: Cichlidae; Cichlidogyrus; Clariidae; Gene order; Gyrodactylus; Macrogyrodactylus; Mitogenome; Monogenea; Monopisthocotylea; Phylogenomics.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

In the absence of relevant animal welfare regulations in the D.R. Congo, the same strict codes of practice enforced within the European Union were applied. Sampling was carried out under research permit no. 863/2014 from the Faculté des Sciences Agronomiques of the Université de Lubumbashi. Since this research did not involve human subjects, human material, or human data, consent to participate did not apply.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Mitochondrial genomes of four African monogeneans, including two members of the Gyrodactylidae: (a) Gyrodactylus nyanzae, (c) Macrogyrodactylus karibae (partial genome) and two representatives of the Dactylogyridae: (b) Cichlidogyrus halli and (d) Cichlidogyrus mbirizei (partial genome). The GC content is displayed for complete mitogenomes
Fig. 2
Fig. 2
Sliding window analyses (window size 300 bp, step size 10 bp) of the alignment of mitochondrial protein-coding and ribosomal RNA genes used for the phylogenetic analyses of the four mitochondrial genomes of African monogeneans. The lines indicate the nucleotide diversity between two dactylogyrids (Cichlidogyrus halli and C. mbirizei, in blue) and two gyrodactylids (Gyrodactylus nyanzae and Macrogyrodactylus karibae, in red). Gene boundaries are indicated above the graph
Fig. 3
Fig. 3
Ratio of non-synonymous to synonymous substitution rates for the protein-coding genes in two pairwise comparisons, between the mitogenomes of African dactylogyrid and gyrodactylid monogeneans, respectively. For Macrogyrodactylus karibae, no nad4 sequence was available, while the nad5 gene was lacking for Cichlidogyrus mbirizei
Fig. 4
Fig. 4
Midpoint-rooted maximum likelihood phylogram of monopisthocotylean monogeneans based on 12 protein-coding and two ribosomal RNA genes. Support values displayed from (above branch): Shimodaira-Hasegawa-like approximate likelihood ratio test/ultrafast bootstrap, both implemented in IQ-TREE, (below branch) bootstrap in RAxML/Bayesian inference (posterior probability) in MrBayes. An asterisk (*) indicates that this partition was not withheld in the Bayesian consensus tree; the clade grouping Dactylogyrus lamellatus and Tetrancistrum nebulosi as sister to a monophyletic Cichlidogyrus was supported by a posterior probability of 58%. Branch lengths indicate the expected number of substitutions per site
Fig. 5
Fig. 5
Family diagram explaining gene order changes between (a) African Gyrodactylus nyanzae and its Palearctic congeners (a single transposition), (b) G. nyanzae and Paragyrodactylus variegatus (a single transposition), (c) G. nyanzae and the Neotropical oviparous gyrodactylid Aglaiogyrodactylus forficulatus (two transpositions and a tandem duplication random loss event (TDRL)) and (d) Dactylogyrus lamellatus and the other dactylogyrids (a single transposition). Green boxes indicate transpositions, a dark blue box a TDRL. Only protein-coding genes, tRNA genes and rRNA genes of species for which a complete mitogenome was assembled, are shown
Fig. 6
Fig. 6
Likelihood mapping (a) before and (b) after Gblocks trimming, demonstrating the high phylogenetic content and suggesting there is no need for alignment cleaning in the case of this dataset

Similar articles

Cited by

References

    1. Cribb TH, Chisholm LA, Bray RA. Diversity in the Monogenea and Digenea: does lifestyle matter? Int J Parasitol. 2002;32:321–328. doi: 10.1016/S0020-7519(01)00333-2. - DOI - PubMed
    1. Pugachev ON, Gerasev PI, Gussev AV, Ergens R, Khotenowsky I. Guide to Monogenoidea of freshwater fish of Palaearctic and Amur regions. Milan: Ledizione-LediPublishing; 2009.
    1. Zahradníčková P, Barson M, Luus-Powell WJ, Přikrylová I. Species of Gyrodactylus Von Nordmann, 1832 (Platyhelminthes: Monogenea) from cichlids from Zambezi and Limpopo river basins in Zimbabwe and South Africa: evidence for unexplored species richness. Syst Parasitol. 2016;93:679–700. doi: 10.1007/s11230-016-9652-x. - DOI - PubMed
    1. Bakke TA, Harris PD, Cable J. Host specificity dynamics: observations on gyrodactylid monogeneans. Int J Parasitol. 2002;32:281–308. doi: 10.1016/S0020-7519(01)00331-9. - DOI - PubMed
    1. Paladini G, Longshaw M, Gustinelli A, Shinn AP. Parasitic diseases in aquaculture: their biology, diagnosis and control. In: Austin B, Newaj-Fyzul A, editors. Diagnosis and control of diseases of fish and shellfish. Chichester: John Wiley & Sons, Ltd; 2017. pp. 37–107.

LinkOut - more resources