Modeling erythrocyte electrodeformation in response to amplitude modulated electric waveforms
- PMID: 29976935
- PMCID: PMC6033869
- DOI: 10.1038/s41598-018-28503-w
Modeling erythrocyte electrodeformation in response to amplitude modulated electric waveforms
Abstract
We present a comprehensive theoretical-experimental framework for quantitative, high-throughput study of cell biomechanics. An improved electrodeformation method has been developed by combing dielectrophoresis and amplitude shift keying, a form of amplitude modulation. This method offers a potential to fully control the magnitude and rate of deformation in cell membranes. In healthy human red blood cells, nonlinear viscoelasticity of cell membranes is obtained through variable amplitude load testing. A mathematical model to predict cellular deformations is validated using the experimental results of healthy human red blood cells subjected to various types of loading. These results demonstrate new capabilities of the electrodeformation technique and the validated mathematical model to explore the effects of different loading configurations on the cellular mechanical behavior. This gives it more advantages over existing methods and can be further developed to study the effects of strain rate and loading waveform on the mechanical properties of biological cells in health and disease.
Conflict of interest statement
The authors declare no competing interests.
Figures






Similar articles
-
Amplitude-Modulated Electrodeformation to Evaluate Mechanical Fatigue of Biological Cells.J Vis Exp. 2023 Oct 13;(200). doi: 10.3791/65897. J Vis Exp. 2023. PMID: 37902362
-
Electrodeformation-Based Biomechanical Chip for Quantifying Global Viscoelasticity of Cancer Cells Regulated by Cell Cycle.Anal Chem. 2018 Jul 17;90(14):8370-8378. doi: 10.1021/acs.analchem.8b00584. Epub 2018 Jun 25. Anal Chem. 2018. PMID: 29896956
-
Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.Acta Biomater. 2017 Jul 15;57:352-362. doi: 10.1016/j.actbio.2017.05.037. Epub 2017 May 17. Acta Biomater. 2017. PMID: 28526627
-
Erythrocyte Membrane Failure by Electromechanical Stress.Appl Sci (Basel). 2018;8(2):174. doi: 10.3390/app8020174. Epub 2018 Jan 25. Appl Sci (Basel). 2018. PMID: 29682337 Free PMC article.
-
Measuring the mechanical properties of individual human blood cells.J Biomech Eng. 1993 Nov;115(4B):515-9. doi: 10.1115/1.2895533. J Biomech Eng. 1993. PMID: 8302034 Review.
Cited by
-
Mechanical fatigue of human red blood cells.Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19828-19834. doi: 10.1073/pnas.1910336116. Epub 2019 Sep 16. Proc Natl Acad Sci U S A. 2019. PMID: 31527252 Free PMC article.
-
Determination of Dielectric Properties of Cells using AC Electrokinetic-based Microfluidic Platform: A Review of Recent Advances.Micromachines (Basel). 2020 May 19;11(5):513. doi: 10.3390/mi11050513. Micromachines (Basel). 2020. PMID: 32438680 Free PMC article. Review.
-
Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review.Mikrochim Acta. 2021 Mar 2;188(3):104. doi: 10.1007/s00604-021-04748-7. Mikrochim Acta. 2021. PMID: 33651196 Review.
-
Dielectrophoresis Separation of Platelets Using a Novel Zigzag Microchannel.Micromachines (Basel). 2020 Sep 25;11(10):890. doi: 10.3390/mi11100890. Micromachines (Basel). 2020. PMID: 32992689 Free PMC article.
-
Efficient and Shape-Sensitive Manipulation of Nanoparticles by Quasi-Bound States in the Continuum Modes in All-Dielectric Metasurfaces.Micromachines (Basel). 2024 Mar 25;15(4):437. doi: 10.3390/mi15040437. Micromachines (Basel). 2024. PMID: 38675249 Free PMC article.
References
-
- Salehyar, S. & Zhu, Q. Effects of stiffness and volume on the transit time of an erythrocyte through a slit. Biomechanics and modeling in mechanobiology, 1–11 (2017). - PubMed
-
- Riva CE, Grunwald JE, Sinclair SH, Petrig B. Blood velocity and volumetric flow rate in human retinal vessels. Investigative ophthalmology & visual science. 1985;26:1124–1132. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases