Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 4;4(7):eaar6297.
doi: 10.1126/sciadv.aar6297. eCollection 2018 Jul.

Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko

Affiliations

Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko

Martin Rubin et al. Sci Adv. .

Abstract

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer Double Focusing Mass Spectrometer on board the European Space Agency's Rosetta spacecraft detected the major isotopes of the noble gases argon, krypton, and xenon in the coma of comet 67P/Churyumov-Gerasimenko. Earlier, it was found that xenon exhibits an isotopic composition distinct from anywhere else in the solar system. However, argon isotopes, within error, were shown to be consistent with solar isotope abundances. This discrepancy suggested an additional exotic component of xenon in comet 67P/Churyumov-Gerasimenko. We show that krypton also exhibits an isotopic composition close to solar. Furthermore, we found the argon to krypton and the krypton to xenon ratios in the comet to be lower than solar, which is a necessity to postulate an addition of exotic xenon in the comet.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Isotopic composition of 67P/C-G krypton, normalized to 84Kr and the SW composition [from (18)].
67P/C-G errors reflect 1-σ SEM and calibration uncertainties for the corresponding averaging periods. In this format, SW-Kr is represented by the horizontal orange line. 83Kr appears to be slightly depleted relative to solar. The red line represents a mix of different nucleosynthetic components [the so-called G-Kr and N-Kr components; (11, 20)]. For the G-Kr composition, we consider the weak s-process composition having low 86Kr/84Kr ratios (20). The best fit was obtained for a proportion of 5% G-Kr in cometary krypton.
Fig. 2
Fig. 2. Relative abundances of the major isotopes of argon, krypton, and xenon.
(A) 84Kr versus 36Ar relative abundances obtained from daily averages with SEM error bars for the 14 to 31 May 2016 period (R2 = 0.67). (B) 132Xe versus 84Kr. (C) 132Xe versus 36Ar. The number associated with each point indicates the day (R2 = 0.83). The error of the daily averages includes the statistical errors, whereas for the slopes, a 16% calibration uncertainty for each element is included. A correlation coefficient of 0.76 was found between the 132Xe/36Ar and 84Kr /36Ar slopes (A and C).
Fig. 3
Fig. 3. Relative abundances of 36Ar, N2, and CO2.
36Ar to H2O abundances for 9 to 21 March 2016 (red) and 14 to 31 May 2016 (blue) in (A), 36Ar to N2 abundances in (B), and N2 to CO2 in (C). The individual measurements show statistical errors. The error of the slope for the combined measurements (black) includes the statistical error, 18% calibration uncertainty (sensitivity and fragmentation pattern for each species), and 20% gain error (R2 = 0.70 for 36Ar/N2 and R2 = 0.12 for CO2/N2).
Fig. 4
Fig. 4. Noble gas relative abundances compared to other solar system reservoirs.
Sources of data: 67P/C-G: production rate ratios with 1-σ errors (SEM and calibration uncertainties) derived from Table 1, 84Kr/36Ar = 0.058 ± 0.013, and 132Xe/36Ar = 0.013 ± 0.003; solar: (18); Earth and Mars: (43); chondritic: CRPG compilation of CI and CM data; amorphous water ice: (24, 25). The blue arrow indicates the presumed composition of the initial atmosphere of Earth before secondary loss of xenon, and possibly krypton, to space through geological periods of time. The two red arrows represent upper limits for the 132Xe/36Ar and 84Kr/36Ar ratios measured in Titan by the Cassini-Huygens probe (23).

Similar articles

  • Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko.
    Balsiger H, Altwegg K, Bar-Nun A, Berthelier JJ, Bieler A, Bochsler P, Briois C, Calmonte U, Combi M, De Keyser J, Eberhardt P, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Hässig M, Jäckel A, Kopp E, Korth A, Le Roy L, Mall U, Marty B, Mousis O, Owen T, Rème H, Rubin M, Sémon T, Tzou CY, Waite JH, Wurz P. Balsiger H, et al. Sci Adv. 2015 Sep 25;1(8):e1500377. doi: 10.1126/sciadv.1500377. eCollection 2015 Sep. Sci Adv. 2015. PMID: 26601264 Free PMC article.
  • Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere.
    Marty B, Altwegg K, Balsiger H, Bar-Nun A, Bekaert DV, Berthelier JJ, Bieler A, Briois C, Calmonte U, Combi M, De Keyser J, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Hässig M, Jäckel A, Kopp E, Korth A, Le Roy L, Mall U, Mousis O, Owen T, Rème H, Rubin M, Sémon T, Tzou CY, Waite JH, Wurz P. Marty B, et al. Science. 2017 Jun 9;356(6342):1069-1072. doi: 10.1126/science.aal3496. Science. 2017. PMID: 28596364
  • Cometary science. Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun.
    Rotundi A, Sierks H, Della Corte V, Fulle M, Gutierrez PJ, Lara L, Barbieri C, Lamy PL, Rodrigo R, Koschny D, Rickman H, Keller HU, López-Moreno JJ, Accolla M, Agarwal J, A'Hearn MF, Altobelli N, Angrilli F, Barucci MA, Bertaux JL, Bertini I, Bodewits D, Bussoletti E, Colangeli L, Cosi M, Cremonese G, Crifo JF, Da Deppo V, Davidsson B, Debei S, De Cecco M, Esposito F, Ferrari M, Fornasier S, Giovane F, Gustafson B, Green SF, Groussin O, Grün E, Güttler C, Herranz ML, Hviid SF, Ip W, Ivanovski S, Jerónimo JM, Jorda L, Knollenberg J, Kramm R, Kührt E, Küppers M, Lazzarin M, Leese MR, López-Jiménez AC, Lucarelli F, Lowry SC, Marzari F, Epifani EM, McDonnell JA, Mennella V, Michalik H, Molina A, Morales R, Moreno F, Mottola S, Naletto G, Oklay N, Ortiz JL, Palomba E, Palumbo P, Perrin JM, Rodríguez J, Sabau L, Snodgrass C, Sordini R, Thomas N, Tubiana C, Vincent JB, Weissman P, Wenzel KP, Zakharov V, Zarnecki JC. Rotundi A, et al. Science. 2015 Jan 23;347(6220):aaa3905. doi: 10.1126/science.aaa3905. Science. 2015. PMID: 25613898
  • Presolar Isotopic Signatures in Meteorites and Comets: New Insights from the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko.
    Hoppe P, Rubin M, Altwegg K. Hoppe P, et al. Space Sci Rev. 2018;214(6):106. doi: 10.1007/s11214-018-0540-3. Epub 2018 Sep 6. Space Sci Rev. 2018. PMID: 37265997 Free PMC article. Review.
  • The Rosetta mission orbiter science overview: the comet phase.
    Taylor MGGT, Altobelli N, Buratti BJ, Choukroun M. Taylor MGGT, et al. Philos Trans A Math Phys Eng Sci. 2017 Jul 13;375(2097):20160262. doi: 10.1098/rsta.2016.0262. Philos Trans A Math Phys Eng Sci. 2017. PMID: 28554981 Free PMC article. Review.

Cited by

References

    1. Glassmeier K.-H., Boehnhardt H., Koschny D., Kührt E., Richter I., The ROSETTA Mission: Flying towards the origin of the solar system. Space Sci. Rev. 128, 1–21 (2007).
    1. Balsiger H., Altwegg K., Bochsler P., Eberhardt P., Fischer J., Graf S., Jäckel A., Kopp E., Langer U., Mildner M., Müller J., Riesen T., Rubin M., Scherer S., Wurz P., Wüthrich S., Arijs E., Delanoye S., De Keyser J., Neefs E., Nevejans D., Rème H., Aoustin C., Mazelle C., Médale J.-L., Sauvaud J. A., Berthelier J.-J., Bertaux J.-L., Duvet L., Illiano J.-M., Fuselier S. A., Ghielmetti A. G., Magoncelli T., Shelley E. G., Korth A., Heerlein K., Lauche H., Livi S., Loose A., Mall U., Wilken B., Gliem F., Fiethe B., Gombosi T. I., Block B., Carignan G. R., Fisk L. A., Waite J. H., Young D. T., Wollnik H., Rosina—Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Sci. Rev. 128, 745–801 (2007).
    1. Le Roy L., Altwegg K., Balsiger H., Berthelier J.-J., Bieler A., Briois C., Calmonte U., Combi M. R., De Keyser J., Dhooghe F., Fiethe B., Fuselier S. A., Gasc S., Gombosi T. I., Hässig M., Jäckel A., Rubin M., Tzou C.-Y., Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astron. Astrophys. 583, A1 (2015).
    1. Bieler A., Altwegg K., Balsiger H., Bar-Nun A., Berthelier J. J., Bochsler P., Briois C., Calmonte U., Combi M., De Keyser J., van Dishoeck E. F., Fiethe B., Fuselier S. A., Gasc S., Gombosi T. I., Hansen K. C., Hässig M., Jäckel A., Kopp E., Korth A., Le Roy L., Mall U., Maggiolo R., Marty B., Mousis O., Owen T., Rème H., Rubin M., Sémon T., Tzou C. Y., Waite J. H., Walsh C., Wurz P., Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko. Nature 526, 678–681 (2015). - PubMed
    1. Hässig M., Altwegg K., Balsiger H., Bar-Nun A., Berthelier J. J., Bieler A., Bochsler P., Briois C., Calmonte U., Combi M., De Keyser J., Eberhardt P., Fiethe B., Fuselier S. A., Galand M., Gasc S., Gombosi T. I., Hansen K. C., Jäckel A., Keller H. U., Kopp E., Korth A., Kührt E., Le Roy L., Mall U., Marty B., Mousis O., Neefs E., Owen T., Rème H., Rubin M., Sémon T., Tornow C., Tzou C. Y., Waite J. H., Wurz P., Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science 347, aaa0276 (2015). - PubMed

Publication types

LinkOut - more resources