Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 31;84(18):e00709-18.
doi: 10.1128/AEM.00709-18. Print 2018 Sep 15.

Modeling Surface Disinfection Needs To Meet Microbial Risk Reduction Targets

Affiliations

Modeling Surface Disinfection Needs To Meet Microbial Risk Reduction Targets

Amanda M Wilson et al. Appl Environ Microbiol. .

Abstract

Nosocomial viral infections are an important cause of health care-acquired infections where fomites have a role in transmission. Using stochastic modeling to quantify the effects of surface disinfection practices on nosocomial pathogen exposures and infection risk can inform cleaning practices. The purpose of this study was to predict the effect of surface disinfection on viral infection risks and to determine needed viral reductions to achieve risk targets. Rotavirus, rhinovirus, and influenza A virus infection risks for two cases were modeled. Case 1 utilized a single fomite contact approach, while case 2 assumed 6 h of contact activities. A 94.1% viral reduction on surfaces and hands was measured following a single cleaning round using an Environmental Protection Agency (EPA)-registered disinfectant in an urgent care facility. This value was used to model the effect of a surface disinfection intervention on infection risk. Risk reductions for other surface-cleaning efficacies were also simulated. Surface reductions required to achieve risk probability targets were estimated. Under case 1 conditions, a 94.1% reduction in virus surface concentration reduced infection risks by 94.1%. Under case 2 conditions, a 94.1% reduction on surfaces resulted in median viral infection risks being reduced by 92.96 to 94.1% and an influenza A virus infection risk below one in a million. Surface concentration in the equations was highly correlated with dose and infection risk outputs. For rotavirus and rhinovirus, a >99.99% viral surface reduction would be needed to achieve a one-in-a-million risk target. This study quantifies reductions of infection risk relative to surface disinfectant use and demonstrates that risk targets for low-infectious-dose organisms may be more challenging to achieve.IMPORTANCE It is known that the use of EPA-registered surface disinfectant sprays can reduce infection risk if used according to the manufacturer's instructions. However, there are currently no standards for health care environments related to contamination levels on surfaces. The significance of this research is in quantifying needed reductions to meet various risk targets using realistic viral concentrations on surfaces for health care environments. This research informs the design of cleaning protocols by demonstrating that multiple applications may be needed to reduce risk and by highlighting a need for more models exploring the relationship among microbial contamination of surfaces, patient and health care worker behaviors, and infection risks.

Keywords: MS2; fomite; infection control; quantitative microbial risk assessment; risk target.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Barker J, Stevens D, Bloomsfield SF. 2001. Spread and prevention of some common viral infections in community facilities and domestic homes. J Appl Microbiol 91:7–21. doi:10.1046/j.1365-2672.2001.01364.x. - DOI - PMC - PubMed
    1. La Rosa G, Fratini M, Della Libera S, Iaconelli M, Muscillo M. 2013. Viral infections acquired indoors through airborne, droplet or contact transmission. Ann Ist Super Sanita 49:124–132. doi:10.4415/ANN_13_02_03. - DOI - PubMed
    1. Khalil IA-M. 2017. The global burden of rotavirus diarrheal diseases: results from the Global Burden of Diseases Study 2016. Open Forum Infect Dis 4:S363.
    1. Aitken C, Jeffries DJ. 2001. Nosocomial spread of viral disease. Clin Microbiol Rev 14:528–546. doi:10.1128/CMR.14.3.528-546.2001. - DOI - PMC - PubMed
    1. Kochanek KD, Murphy SL, Xu J, Tejada-Vera B. 2016. National vital statistics report. CDC, Atlanta, GA. - PubMed

Publication types

MeSH terms