A Decision-Support Tool for Renal Mass Classification
- PMID: 29980960
- PMCID: PMC6261185
- DOI: 10.1007/s10278-018-0100-0
A Decision-Support Tool for Renal Mass Classification
Abstract
We investigate the viability of statistical relational machine learning algorithms for the task of identifying malignancy of renal masses using radiomics-based imaging features. Features characterizing the texture, signal intensity, and other relevant metrics of the renal mass were extracted from multiphase contrast-enhanced computed tomography images. The recently developed formalism of relational functional gradient boosting (RFGB) was used to learn human-interpretable models for classification. Experimental results demonstrate that RFGB outperforms many standard machine learning approaches as well as the current diagnostic gold standard of visual qualification by radiologists.
Keywords: Clinical decision support; Multiphase CT; Radiomics; Renal mass; Statistical relational learning.
Figures





Similar articles
-
Differentiating Benign From Malignant Cystic Renal Masses: A Feasibility Study of Computed Tomography Texture-Based Machine Learning Algorithms.J Comput Assist Tomogr. 2023 May-Jun 01;47(3):376-381. doi: 10.1097/RCT.0000000000001433. Epub 2023 Feb 10. J Comput Assist Tomogr. 2023. PMID: 37184999
-
Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas.Eur Radiol. 2019 Sep;29(9):4765-4775. doi: 10.1007/s00330-019-6003-8. Epub 2019 Feb 12. Eur Radiol. 2019. PMID: 30747300
-
Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach.Medicine (Baltimore). 2020 Apr;99(16):e19725. doi: 10.1097/MD.0000000000019725. Medicine (Baltimore). 2020. PMID: 32311963 Free PMC article.
-
Utility of Slow Intraprocedural Infusion of IV Contrast Material to Improve the Visibility of Endophytic Renal Masses During CT-Guided Biopsy.AJR Am J Roentgenol. 2022 Feb;218(2):375. doi: 10.2214/AJR.21.26541. Epub 2021 Dec 15. AJR Am J Roentgenol. 2022. PMID: 34467780 Review. No abstract available.
-
Radiomics and Artificial Intelligence for Renal Mass Characterization.Radiol Clin North Am. 2020 Sep;58(5):995-1008. doi: 10.1016/j.rcl.2020.06.001. Epub 2020 Jul 16. Radiol Clin North Am. 2020. PMID: 32792129 Review.
Cited by
-
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information.J Digit Imaging. 2021 Oct;34(5):1086-1098. doi: 10.1007/s10278-021-00500-y. Epub 2021 Aug 11. J Digit Imaging. 2021. PMID: 34382117 Free PMC article.
-
Predicting common solid renal tumors using machine learning models of classification of radiologist-assessed magnetic resonance characteristics.Abdom Radiol (NY). 2020 Sep;45(9):2797-2809. doi: 10.1007/s00261-020-02637-w. Epub 2020 Jul 14. Abdom Radiol (NY). 2020. PMID: 32666233
-
Deep learning based classification of solid lipid-poor contrast enhancing renal masses using contrast enhanced CT.Br J Radiol. 2020 Jul;93(1111):20200002. doi: 10.1259/bjr.20200002. Epub 2020 May 11. Br J Radiol. 2020. PMID: 32356484 Free PMC article.
-
Application of artificial intelligence in the diagnosis and treatment of urinary tumors.Front Oncol. 2024 Aug 12;14:1440626. doi: 10.3389/fonc.2024.1440626. eCollection 2024. Front Oncol. 2024. PMID: 39188685 Free PMC article. Review.
-
Radiogenomic correlation of hypoxia-related biomarkers in clear cell renal cell carcinoma.J Cancer Res Clin Oncol. 2025 Jun 12;151(6):186. doi: 10.1007/s00432-025-06240-8. J Cancer Res Clin Oncol. 2025. PMID: 40500522 Free PMC article.
References
-
- National Cancer Institute. Cancer prevalence and cost of care projections. https:// costprojections.cancer.gov/graph.php, 2018. [Online; accessed 03-January-2018].
-
- Adam C. Mues and Jaime Landman: Small renal masses: current concepts regarding the natural history and reflections on the American Urological Association guidelines. Curr Opin Urol 20, 2010. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical