Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 1;73(9):2360-2373.
doi: 10.1093/jac/dky229.

In vitro antileishmanial activity of ravuconazole, a triazole antifungal drug, as a potential treatment for leishmaniasis

Affiliations

In vitro antileishmanial activity of ravuconazole, a triazole antifungal drug, as a potential treatment for leishmaniasis

Sara Teixeira de Macedo Silva et al. J Antimicrob Chemother. .

Abstract

Objectives: Leishmaniasis, one of the most significant neglected diseases around the world, is caused by protozoan parasites of the Leishmania genus. Nowadays, the available aetiological treatments for leishmaniasis have variable effectiveness and several problems such as serious side effects, toxicity, high cost and an increasing number of resistance cases. Thus, there is an urgent need for safe, oral and cost-effective drugs for leishmaniases. Previously, our group has shown the effect of the ergosterol biosynthesis inhibitors on Leishmania amazonensis. Herein, we showed the effect of ravuconazole against L. amazonensis; ravuconazole is a second-generation triazole antifungal drug that has good bioavailability after oral administration and a long terminal half-life in humans, a broad activity spectrum, high effectiveness in treatment of mycosis and negligible side effects.

Methods: Several methodologies were used: cell culture, fluorescence and electron microscopy, high-resolution capillary GC coupled with MS, fluorimetry and flow cytometry.

Results: Our results showed that ravuconazole was able to inhibit the proliferation of L. amazonensis promastigotes and intracellular amastigotes in vitro, with single-digit to sub-micromolar IC50 values, causing several alterations in the morphology, ultrastructure, cell viability and physiology of the parasites. The mitochondrion was significantly affected by the treatment, resulting in a collapse of the mitochondrial transmembrane potential that consequently led to inhibition of ATP production, combined with an increase in reactive oxygen species and mitochondrial superoxide production; by transmission electron microscopy, the organelle displayed a completely altered ultrastructure. The treatment changed the lipid profile, showing a profound depletion of the 14-desmethyl endogenous sterol pool.

Conclusions: These results suggest that ravuconazole could be an alternative option for the treatment of leishmaniasis.

PubMed Disclaimer

Publication types

LinkOut - more resources