Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct;25(9-10):248-259.
doi: 10.1038/s41417-018-0032-3. Epub 2018 Jul 9.

Serum exosomes contain ECRG4 mRNA that suppresses tumor growth via inhibition of genes involved in inflammation, cell proliferation, and angiogenesis

Affiliations

Serum exosomes contain ECRG4 mRNA that suppresses tumor growth via inhibition of genes involved in inflammation, cell proliferation, and angiogenesis

Liang Mao et al. Cancer Gene Ther. 2018 Oct.

Abstract

Esophageal cancer related gene-4 (Ecrg4) has been shown to be a tumor suppressor in many organs. Exosomes are naturally secreted nanosized particles that carry signal molecules including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs) among others. Upon internalization, exosomes unload their cargos that in turn modulate the biology of the recipient cells. Mounting evidence has shown that exosomal miRNAs are functional. However, reports that exosomes carry functional mRNAs remain scarce. We found that serum exosomes contain ECRG4 open reading frame. To simulate serum exosomal ECRG4, stable cell line expressing ECRG4 was created, from which exosomes were isolated and characterized, and the internalization and the resulting biological effects of exosomal ECRG4 were evaluated. Results showed that serum exosomes contain higher levels of ECRG4 mRNA in healthy individuals than their cancer counterparts. Exosomal ECRG4 can be internalized and unload the encapsulated ECRG4 into recipient cells, which subsequently suppressed cell proliferation in vitro, and inhibited tumor growth in a xenograft mouse model. Mechanistically, ECRG4-containing exosomes, when internalized, suppressed the expression of genes commonly implicated in inflammation, cell proliferation, and angiogenesis. Given that exosome is an ideal vehicle for therapeutics delivery and that ECRG4 is a tumor suppressor gene, the exosomal ECRG4 can be exploited as a formulation for cancer gene therapy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources