Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients
- PMID: 29986705
- PMCID: PMC6038346
- DOI: 10.1186/s12920-018-0375-5
Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients
Abstract
Background: Sensorineural hearing loss (SNHL) is the most common sensory impairment. Comprehensive next-generation sequencing (NGS) has become the standard for the etiological diagnosis of early-onset SNHL. However, accurate selection of target genomic regions (gene panel/exome/genome), analytical performance and variant interpretation remain relevant difficulties for its clinical implementation.
Methods: We developed a novel NGS panel with 199 genes associated with non-syndromic and/or syndromic SNHL. We evaluated the analytical sensitivity and specificity of the panel on 1624 known single nucleotide variants (SNVs) and indels on a mixture of genomic DNA from 10 previously characterized lymphoblastoid cell lines, and analyzed 50 Spanish patients with presumed hereditary SNHL not caused by GJB2/GJB6, OTOF nor MT-RNR1 mutations.
Results: The analytical sensitivity of the test to detect SNVs and indels on the DNA mixture from the cell lines was > 99.5%, with a specificity > 99.9%. The diagnostic yield on the SNHL patients was 42% (21/50): 47.6% (10/21) with autosomal recessive inheritance pattern (BSND, CDH23, MYO15A, STRC [n = 2], USH2A [n = 3], RDX, SLC26A4); 38.1% (8/21) autosomal dominant (ACTG1 [n = 3; 2 de novo], CHD7, GATA3 [de novo], MITF, P2RX2, SOX10), and 14.3% (3/21) X-linked (COL4A5 [de novo], POU3F4, PRPS1). 46.9% of causative variants (15/32) were not in the databases. 28.6% of genetically diagnosed cases (6/21) had previously undetected syndromes (Barakat, Usher type 2A [n = 3] and Waardenburg [n = 2]). 19% of genetic diagnoses (4/21) were attributable to large deletions/duplications (STRC deletion [n = 2]; partial CDH23 duplication; RDX exon 2 deletion).
Conclusions: In the era of precision medicine, obtaining an etiologic diagnosis of SNHL is imperative. Here, we contribute to show that, with the right methodology, NGS can be transferred to the clinical practice, boosting the yield of SNHL genetic diagnosis to 50-60% (including GJB2/GJB6 alterations), improving diagnostic/prognostic accuracy, refining genetic and reproductive counseling and revealing clinically relevant undiagnosed syndromes.
Keywords: Diagnostics; Gene panel; Hearing loss; Hereditary; NGS; Precision.
Conflict of interest statement
Ethics approval and consent to participate
The study was approved by the Comité de Ética de Investigación del Principado de Asturias (research project #75/14). Consent was obtained from all patients or their parents.
Consent for publication
Not applicable.
Competing interests
The following authors are currently employed by IMOMA or DREAMgenics, the companies involved in the development and exploitation of the OTOgenics™ platform: IMOMA: Ru.C. (Physician in Chief), M.D. (Clinical Molecular Geneticist), G.A.C. (Biotechnologist), N.S.D. (Lab. Technician), R.A. (Lab. Technician), Ra.C. (Molecular Biologist) and J.C. (Scientific Director); DREAMgenics: D.C. (Bioinformatitian), P.C.P. (Bioinformatitian) and G.R.O. (Bioinformatitian, C.S.O. and C.E.O.). G.R.O. is a shareholder of DREAMgenics. The other authors declare no conflict of interest.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures
References
-
- Alford RL, Arnos KS, Fox M, Lin JW, Palmer CG, Pandya A, Rehm HL, Robin NH, Scott DA, Yoshinaga-Itano C, et al. American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med. 2014;16(4):347–355. doi: 10.1038/gim.2014.2. - DOI - PubMed
-
- Sabatini LM, Mathews C, Ptak D, Doshi S, Tynan K, Hegde MR, Burke TL, Bossler AD. Genomic sequencing procedure microcosting analysis and health economic cost-impact analysis: A Report of the Association for Molecular Pathology. J Mol Diagn. 2016;18(3):319–328. doi: 10.1016/j.jmoldx.2015.11.010. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
