Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 25;140(29):9087-9090.
doi: 10.1021/jacs.8b05683. Epub 2018 Jul 10.

Hydroamination versus Allylic Amination in Iridium-Catalyzed Reactions of Allylic Acetates with Amines: 1,3-Aminoalcohols via Ester-Directed Regioselectivity

Affiliations

Hydroamination versus Allylic Amination in Iridium-Catalyzed Reactions of Allylic Acetates with Amines: 1,3-Aminoalcohols via Ester-Directed Regioselectivity

Seung Wook Kim et al. J Am Chem Soc. .

Abstract

In the presence of a neutral dppf-modified iridium catalyst and Cs2CO3, linear allylic acetates react with primary amines to form products of hydroamination with complete 1,3-regioselectivity. The collective data, including deuterium labeling studies, corroborate a catalytic mechanism involving rapid, reversible acetate-directed aminoiridation with inner-sphere/outer-sphere crossover followed by turnover-limiting proto-demetalation mediated by amine.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1.
Figure 1.
Cationic vs neutral iridium catalysts promote Tsuji-Trost allylic amination and hydroamination, respectively.
Scheme 1.
Scheme 1.
Deuterium labelling experiments. aReactants and products characterized by 1H NMR, 2H NMR and HRMS. See Supporting Information for further experimental details.
Scheme 2.
Scheme 2.
General catalytic mechanism for iridium catalyzed hydroamination of linear allylic acetates, as corroborated by deuterium labeling.

References

    1. For selected reviews on metal catalyzed hydroamination, see:

    2. Müller TE; Beller M Chem. Rev 1998. 98 675. - PubMed
    3. Hong S; Marks TJ ,Acc. Chem. Res 2004, 37 673. - PubMed
    4. Severin R; Doye S Chem. Soc. Rev 2007. 36 1407. - PubMed
    5. Müller TE; Hultzsch KC; Yus M; Foubelo F; Tada. M. Chem. Rev 2008. 108 3795. - PubMed
    6. Hesp KD; Stradiotto M ChemCatChem 2010, 2 1192.
    7. Schafer LL; Yim JCH; Yonson N In Metal-Catalyzed Cross Coupling Reactions and More; De Meijere A, Bräse S, Oestreich M, Eds.; Wiley-VCH: Weinheim, Germany, 2014; Vol. 3, p 1135.
    8. Huang L; Arndt M; Gooβen K; Heydt H; Gooβen L J. Chem. Rev 2015. 115 2596. - PubMed
    9. Gupta AK; Hull KL Synlett 2015. 26 1779.
    1. For related photoredox-mediated olefin hydroaminations, see:

    2. Musacchio AJ; Nguyen LQ; Beard GH; Knowles RR J. Am. Chem. Soc 2014, 136, 12217. - PubMed
    3. Miller DC; Choi GJ; Orbe HS; Knowles RR J. Am. Chem. Soc 2015, 137, 13492. - PMC - PubMed
    4. Musacchio AJ; Lainhart BC; Zhang X; Naguib SG; Sherwood TC; Knowles RR Science 2017, 355 727. - PMC - PubMed
    1. For intermolecular rhodium catalyzed olefin hydroamination, see:

    2. Coulson DR Tetrahedron Lett 1971, 5 429.
    3. Brunet J-J; Neibecker D; Philippot K J. Chem. Soc. Chem. Commun 1992, 1215.
    4. Beller M; Eichberger M; Trauthwein H Angew. Chem. Int. Ed. Engl. 1997, 36, 2225.
    5. Beller M; Trauthwein H; Eichberger M; Breindl C; Herwig J; Müller TE; Thiel OR Chem. Eur. J 1999, 5, 1306.
    6. Beller M; Trauthwein H; Eichberger M; Breindl C; Müller TE Eur. J. Inorg. Chem 1999, 1121.
    7. Utsunomiya M; Kuwano R; Kawatsura M; Hartwig JF J. Am. Chem. Soc 2003, 125, 5608. - PubMed
    8. Baudequin C; Brunet J-J; Rodriguez-Zubiri M Organometallics 2007, 26, 5264.
    9. Jiménez MV; Pérez-Torrente JJ; Bartolomé MI; Lahoz FJ; Oro LA Chem. Commun 2010, 46, 5322. - PubMed
    10. Béthegnies A; Kirkina VA; Filippov OA; Daran JC; Belkova NV; Shubina E; Poli R Inorg. Chem 2011, 50, 12539. - PubMed
    11. Ickes AR; Ensign SC; Gupta AK; Hull KL J. Am. Chem. Soc 2014, 136, 11256. - PubMed
    12. Ensign SC; Vanable EP; Kortman GD; Weir LJ; Hull KL J. Am. Chem. Soc 2015, 137, 13748. - PubMed
    1. For intramolecular rhodium catalyzed olefin hydroamination, see:

    2. Diamond SE; Szalkiewicz A; Mares F J. Am. Chem. Soc 1979, 101, 490.
    3. Takemiya A; Hartwig JF J. Am. Chem. Soc 2006, 128, 6042. - PubMed
    4. Liu Z; Hartwig JF J. Am. Chem. Soc 2008, 130, 1570. - PMC - PubMed
    5. Bauer EB; Andavan GTS; Hollis TK; Rubio RJ; Cho J; Kuchenbeiser GR; Helgert TR; Letko CS; Tham FS Org. Lett 2008, 10, 1175. - PubMed
    6. Shen X; Buchwald SL Angew. Chem. Int. Ed 2010, 49, 564. - PMC - PubMed
    7. Julian LD; Hartwig JF J. Am. Chem. Soc 2010, 132, 13813. - PMC - PubMed
    8. Liu Z; Yamamichi H; Madrahimov ST; Hartwig JF J. Am. Chem. Soc 2011, 133, 2772. - PMC - PubMed
    9. Hua C; Vuong KQ; Bhadbhade M; Messerle BA Organometallics 2012, 31, 1790.
    1. For intermolecular iridium catalyzed olefin hydroamination, see:

    2. Casalnuovo AL; Calabrese JC; Milstein D J. Am. Chem. Soc 1988, 110, 6738.
    3. Dorta R; Egli P; Zurcher F; Togni A J. Am. Chem. Soc 1997, 119, 10857.
    4. Zhou J; Hartwig JF J. Am. Chem. Soc 2008, 130, 12220. - PubMed
    5. Sevov CS; Zhou J; Hartwig JF J. Am. Chem. Soc 2012, 134, 11960. - PubMed
    6. Pan S; Endo K; Shibata T Org. Lett 2012, 14, 780. - PubMed
    7. Sevov CS; Zhou J; Hartwig JF J. Am. Chem. Soc 2014, 136, 3200. - PubMed

Publication types

LinkOut - more resources