Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan-Feb;16(1):322-335.
doi: 10.1109/TCBB.2017.2764908. Epub 2017 Oct 23.

Switched Latent Force Models for Reverse-Engineering Transcriptional Regulation in Gene Expression Data

Switched Latent Force Models for Reverse-Engineering Transcriptional Regulation in Gene Expression Data

Andres F Lopez-Lopera et al. IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb.

Abstract

To survive environmental conditions, cells transcribe their response activities into encoded mRNA sequences in order to produce certain amounts of protein concentrations. The external conditions are mapped into the cell through the activation of special proteins called transcription factors (TFs). Due to the difficult task to measure experimentally TF behaviors, and the challenges to capture their quick-time dynamics, different types of models based on differential equations have been proposed. However, those approaches usually incur in costly procedures, and they present problems to describe sudden changes in TF regulators. In this paper, we present a switched dynamical latent force model for reverse-engineering transcriptional regulation in gene expression data which allows the exact inference over latent TF activities driving some observed gene expressions through a linear differential equation. To deal with discontinuities in the dynamics, we introduce an approach that switches between different TF activities and different dynamical systems. This creates a versatile representation of transcription networks that can capture discrete changes and non-linearities. We evaluate our model on both simulated data and real data (e.g., microaerobic shift in E. coli, yeast respiration), concluding that our framework allows for the fitting of the expression data while being able to infer continuous-time TF profiles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources