Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;23(3):1129-1140.
doi: 10.1109/JBHI.2018.2843819. Epub 2018 Jun 4.

MR Image Super-Resolution via Wide Residual Networks With Fixed Skip Connection

MR Image Super-Resolution via Wide Residual Networks With Fixed Skip Connection

Jun Shi et al. IEEE J Biomed Health Inform. 2019 May.

Abstract

Spatial resolution is a critical imaging parameter in magnetic resonance imaging. The image super-resolution (SR) is an effective and cost efficient alternative technique to improve the spatial resolution of MR images. Over the past several years, the convolutional neural networks (CNN)-based SR methods have achieved state-of-the-art performance. However, CNNs with very deep network structures usually suffer from the problems of degradation and diminishing feature reuse, which add difficulty to network training and degenerate the transmission capability of details for SR. To address these problems, in this work, a progressive wide residual network with a fixed skip connection (named FSCWRN) based SR algorithm is proposed to reconstruct MR images, which combines the global residual learning and the shallow network based local residual learning. The strategy of progressive wide networks is adopted to replace deeper networks, which can partially relax the above-mentioned problems, while a fixed skip connection helps provide rich local details at high frequencies from a fixed shallow layer network to subsequent networks. The experimental results on one simulated MR image database and three real MR image databases show the effectiveness of the proposed FSCWRN SR algorithm, which achieves improved reconstruction performance compared with other algorithms.

PubMed Disclaimer

Publication types