Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar;23(2):714-722.
doi: 10.1109/JBHI.2018.2818620. Epub 2018 Mar 26.

Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks

Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks

Marios Anthimopoulos et al. IEEE J Biomed Health Inform. 2019 Mar.

Abstract

Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a data set of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semisupervised fashion, utilizing both labeled and nonlabeled image regions. The experimental results show significant performance improvement with respect to the state of the art.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources