Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan-Feb;17(1):56-70.
doi: 10.1109/TCBB.2018.2853728. Epub 2018 Jul 6.

Assessing the Effectiveness of Causality Inference Methods for Gene Regulatory Networks

Assessing the Effectiveness of Causality Inference Methods for Gene Regulatory Networks

Syed Sazzad Ahmed et al. IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb.

Abstract

Causality inference is the use of computational techniques to predict possible causal relationships for a set of variables, thereby forming a directed network. Causality inference in Gene Regulatory Networks (GRNs) is an important, yet challenging task due to the limits of available data and lack of efficiency in existing causality inference techniques. A number of techniques have been proposed and applied to infer causal relationships in various domains, although they are not specific to regulatory network inference. In this paper, we assess the effectiveness of methods for inferring causal GRNs. We introduce seven different inference methods and apply them to infer directed edges in GRNs. We use time-series expression data from the DREAM challenges to assess the methods in terms of quality of inference and rank them based on performance. The best method is applied to Breast Cancer data to infer a causal network. Experimental results show that Causation Entropy is best, however, highly time-consuming and not feasible to use in a relatively large network. We infer Breast Cancer GRN with the second-best method, Transfer Entropy. The topological analysis of the network reveals that top out-degree genes such as SLC39A5 which are considered central genes, play important role in cancer progression.

PubMed Disclaimer