Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 11;20(1):138.
doi: 10.1186/s13075-018-1640-x.

Long noncoding RNA expression profile and association with SLEDAI score in monocyte-derived dendritic cells from patients with systematic lupus erythematosus

Affiliations

Long noncoding RNA expression profile and association with SLEDAI score in monocyte-derived dendritic cells from patients with systematic lupus erythematosus

Yilun Wang et al. Arthritis Res Ther. .

Abstract

Background: Monocyte-derived dendritic cells (moDCs) play important roles in the pathogenesis of systemic lupus erythematosus (SLE). Aberrant expression of long noncoding RNAs (lncRNAs) could affect the function of moDCs. The aim of this study was to explore the lncRNA expression profile in moDCs of SLE patients to provide new insights into SLE.

Methods: LncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs and mRNAs in moDCs of SLE patients compared with normal controls. Bioinformatics analysis was also performed. Quantitative polymerase chain reaction (qPCR) was used to validate the results, and correlation analysis was used to analyze the relationship between these aberrantly expressed lncRNAs and SLE disease activity index (SLEDAI) scores.

Results: According to the gene expression profiles, 163 lncRNAs were differentially expressed between SLE and normal controls, including 118 that were upregulated and 45 that were downregulated. A total of 137 mRNAs were differentially expressed in moDCs of patients with SLE, including 83 that were upregulated and 54 that were downregulated. Furthermore, qPCR data showed that lncRNA ENST00000604411.1 (18.23-fold, P < 0.001) and ENST00000501122.2 (1.96-fold, P < 0.001) were upregulated and the other two lncRNAs, lnc-HSFY2-3:3 (0.42-fold, P < 0.001) and lnc-SERPINB9-1:2 (0.50-fold, P = 0.040), were downregulated in moDCs of SLE patients. The expression levels of ENST00000604411.1 (r = 0.593, P = 0.020) and ENST00000501122.2 (r = 0.539, P = 0.038) were positively correlated with the SLEDAI score, respectively.

Conclusions: The results indicate that the abnormal expression of lncRNAs in moDCs may be involved in the pathological processes of SLE. The expression level of ENST00000604411.1 and ENST00000501122.2 may have potential value for the assessment of disease activity in SLE.

Keywords: Expression profile; Long noncoding RNA; Monocyte-derived dendritic cells; Systematic lupus erythematosus.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Independent Ethics Committee of Huashan Hospital and written informed consent was obtained from all subjects.

Consent for publication

Written informed consents were obtained from the patients for publication of their individual details and accompanying images in this manuscript. The consent form is held by the authors and is available for review by the Editor-in-Chief.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
moDCs were identified using flow cytometry. The phenotype of the cells displayed high expression of a HLA-DR, b CD83, c CD11c, d CD86, and e CD40, and f low expression of CD14
Fig. 2
Fig. 2
Volcano plots and hierarchical clusters of differentially expressed lncRNAs and mRNAs. a LncRNA volcano plots of SLE patients versus normal controls. b A total of 163 lncRNAs were differentially expressed in moDCs of patients with SLE (n = 5) compared with normal controls (n = 5), including 118 upregulated and 45 downregulated lncRNA (fold change (FC) ≥ 2.0, P < 0.05). c mRNA volcano plots of SLE patients versus normal controls. d A total of 137 mRNAs were differentially expressed in moDCs of patients with SLE (n = 5) compared with normal controls (n = 5), including 83 upregulated and 54 downregulated mRNAs (fold change ≥ 2.0, P < 0.05). In a and c, each point represents a different transcript. Red points represent genes that were significantly upregulated and green points represent genes that were significantly downregulated. In b and d, relatively high expression is indicated by red shading and relatively low expression is indicated by green shading. N1–5 represents normal controls and S1–5 represents the patients with SLE
Fig. 3
Fig. 3
Gene ontology (GO) and pathway enrichment analysis for differentially regulated mRNAs. a GO analysis of mRNAs according to biological process. b GO analysis of mRNAs according to cellular component. c GO analysis of mRNAs according to molecular function. d Pathway analysis of differentially expressed mRNAs in moDCs of SLE patients. ECM extracellular matrix
Fig. 4
Fig. 4
Validation of selected lncRNAs by qRT-PCR. The levels of ENST00000604411.1 (*P < 0.001), ENST00000501122.2 (*P < 0.001), ENST00000568394.1 (P = 0.151), lnc-HSFY2–3:3 (*P < 0.001), and lnc-SERPINB9–1:2 (*P = 0.040) were determined in moDCs of 15 normal controls (NC) and 15 patients with systemic lupus erythematosus (SLE) (ae). Data are shown as mean ± SD. f The change patterns between microarray analysis and quantitative polymerase chain reaction (qPCR)
Fig. 5
Fig. 5
Correlation between lncRNAs and systemic lupus erythematosus disease activity index (SLEDAI). a, b ENST00000604411.1 and ENST00000501122.2 expression was positively correlated with SLEDAI score. c No significantly correlation was observed between lnc-HSFY2–3:3 and SLEDAI score. d No significantly correlation was observed between lnc-SERPINB9–1:2 and SLEDAI score

Similar articles

Cited by

References

    1. Mackern-Oberti JP, Llanos C, Riedel CA, Bueno SM, Kalergis AM. Contribution of dendritic cells to the autoimmune pathology of systemic lupus erythematosus. Immunology. 2015;146(4):497–507. doi: 10.1111/imm.12504. - DOI - PMC - PubMed
    1. Mahajan A, Herrmann M, Munoz LE. Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. Front Immunol. 2016;7:1–12. doi: 10.3389/fimmu.2016.00035. - DOI - PMC - PubMed
    1. Klarquist J, Zhou Z, Shen N, Janssen EM. Dendritic cells in systemic lupus erythematosus: from pathogenic players to therapeutic tools. Mediat Inflamm. 2016;2016:5045248. doi: 10.1155/2016/5045248. - DOI - PMC - PubMed
    1. Son M, Kim SJ, Diamond B. SLE-associated risk factors affect DC function. Immunol Rev. 2016;269(1):100–117. doi: 10.1111/imr.12348. - DOI - PMC - PubMed
    1. Chan VS, Nie YJ, Shen N, Yan S, Mok MY, Lau CS. Distinct roles of myeloid and plasmacytoid dendritic cells in systemic lupus erythematosus. Autoimmun Rev. 2012;11(12):890–897. doi: 10.1016/j.autrev.2012.03.004. - DOI - PubMed

Publication types

Substances