Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb;21(2):464-470.
doi: 10.1038/s41436-018-0072-y. Epub 2018 Jul 12.

Phrank measures phenotype sets similarity to greatly improve Mendelian diagnostic disease prioritization

Affiliations
Free article

Phrank measures phenotype sets similarity to greatly improve Mendelian diagnostic disease prioritization

Karthik A Jagadeesh et al. Genet Med. 2019 Feb.
Free article

Abstract

Purpose: Exome sequencing and diagnosis is beginning to spread across the medical establishment. The most time-consuming part of genome-based diagnosis is the manual step of matching the potentially long list of patient candidate genes to patient phenotypes to identify the causative disease.

Methods: We introduce Phrank (for phenotype ranking), an information theory-inspired method that utilizes a Bayesian network to prioritize candidate diseases or genes, as a stand-alone module that can be run with any underlying knowledgebase and any variant filtering scheme.

Results: Phrank outperforms existing methods at ranking the causative disease or gene when applied to 169 real patient exomes with Mendelian diagnoses. Phrank's greatest improvement is in disease space, where across all 169 patients it ranks only 3 diseases on average ahead of the true diagnosis, whereas Phenomizer ranks 32 diseases ahead of the causal one.

Conclusions: Using Phrank to rank all patient candidate genes or diseases, as they start working through a new case, will save the busy clinician much time in deriving a genetic diagnosis.

Keywords: Bayesian network; Information theory; Medical genetics; Mendelian disease diagnosis; Variant prioritization.

PubMed Disclaimer

References

    1. Iglesias A, Anyane-Yeboa K, Wynn J, et al. The usefulness of whole-exome sequencing in routine clinical practice. Genet Med. 2014;16:922–31. https://doi.org/10.1038/gim.2014.58 - DOI - PubMed - PMC
    1. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013;369:1502–11. https://doi.org/10.1056/NEJMoa1306555 - DOI - PubMed - PMC
    1. Lee H, Deignan JL, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–7. https://doi.org/10.1001/jama.2014.14604 - DOI - PubMed - PMC
    1. Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3. https://doi.org/10.1038/ng.646 - DOI - PubMed - PMC
    1. Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6. https://doi.org/10.1038/nature08250 - DOI - PubMed - PMC

Publication types

LinkOut - more resources