Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 23;9(23):5284-5288.
doi: 10.1039/c8sc01538d. eCollection 2018 Jun 21.

Copper-catalyzed enantioselective 1,2-borylation of 1,3-dienes

Affiliations

Copper-catalyzed enantioselective 1,2-borylation of 1,3-dienes

Yangbin Liu et al. Chem Sci. .

Abstract

A highly enantioselective Cu-catalyzed borylation of 2-substituted 1,3-dienes is reported. The use of a chiral phosphanamine ligand is essential in achieving high chemo-, regio-, diastereo- and enantioselectivity. It provides access to a variety of homoallylic boronates in consistently high yield and enantiomeric excess with 2-aryl and 2-heteroaryl 1,3-dienes as well as sterically demanding 2-alkyl 1,3-dienes. Preliminary investigations based on a non-linear effect study point to a mechanism involving more than one metal center.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. (A) Linear vs. 2-substituted conjugated 1,3-dienes. (B) Selectivity challenges in hydroboration and borylation of 2-substituted 1,3-dienes. (C) Previous hydroborations/borylations of 2-substituted 1,3-dienes. (D) Arylboration of isoprene along with putative primary and tertiary Cu σ-allyl intermediates.
Fig. 2
Fig. 2. Sequential borylation/oxidation of 2-(hetero)aryl substituted 1,3-dienes. Reaction conditions: 1a (0.36 mmol), B2(pin)2 (0.30 mmol). Chemoselectivity assessed by 1H NMR after borylation. Yields of isolated alcohols 2′. Enantioselectivity determined after oxidation by HPLC, GC or SFC using a chiral stationary phase. aThe minor isomer is 4′n. bIsolated as a 5 : 1 mixture.
Fig. 3
Fig. 3. Sequential borylation/oxidation of 2-alkyl substituted 1,3-dienes. Reaction conditions: 1u-x (0.18–0.36 mmol), B2(pin)2 (0.15–0.30 mmol). Chemoselectivity assessed by 1H NMR after borylation. Isolated yields for alcohols 2′v-x. Enantioselectivity determined after oxidation by HPLC, GC, SFC using a chiral stationary phase. aConversion of non-separable isomers determined by 1H NMR (2′u + 3′u). bAt 0 °C for 24 h.
Fig. 4
Fig. 4. Non-linear effect study. Reaction conditions: 1a (0.12 mmol), B2(pin)2 (0.10 mmol). Chemoselectivity > 20 : 1 in all cases as assessed by 1H NMR. Enantioselectivity determined after oxidation by HPLC using a chiral stationary phase. Average of two experiments.
Fig. 5
Fig. 5. Catalyst-controlled diastereoselective borylation of (S)-1y. Reaction conditions: (S)-1y (0.24 mmol), B2(pin)2 (0.20 mmol). Chemoselectivity > 20 : 1 in all cases as assessed by 1H after borylation. Diastereoselectivity assessed by 1H and 13C{1H} NMR after borylation and oxidation. Isolated yields after oxidation.
Fig. 6
Fig. 6. Borylation/oxidation sequence of bis-diene 1z (0.36 mmol scale). a1,2-/4,3-selectivity = 10 : 1. bInseparable mixture.

References

    1. Nicolaou K. C., Snyder S. A., Montagnon T., Vassilikogiannakis G. Angew. Chem., Int. Ed. 2002;41:1668. - PubMed
    2. Negishi E.-I., Huang Z., Wang G., Mohan S., Wang C., Hattori H. Acc. Chem. Res. 2008;41:1474. - PubMed
    1. Leicht H., Göttker-Schnetmann I., Mecking S. ACS Macro Lett. 2016;5:777. - PubMed
    2. Yao C., Liu N., Long S., Wu C., Cui D. Polym. Chem. 2016;7:1264.
    3. Leicht H., Göttker-Schnetmann I., Mecking S. J. Am. Chem. Soc. 2017;139:6823. - PubMed
    1. Mahatthananchai J., Dumas A. M., Bode J. W. Angew. Chem., Int. Ed. 2012;51:10954. - PubMed
    2. Xiong Y., Sun Y., Zhang G. Tetrahedron Lett. 2018;59:347.
    1. Ely R. J., Morken J. P. J. Am. Chem. Soc. 2010;132:2534. - PMC - PubMed
    2. Sharma R. K., RajanBabu T. V. J. Am. Chem. Soc. 2010;132:3295. - PMC - PubMed
    3. Watkins A. L., Landis C. R. Org. Lett. 2011;13:164. - PubMed
    4. Zbieg J. R., Yamaguchi E., McInturff E. L., Krische M. J. Science. 2012;336:324. - PMC - PubMed
    5. Kliman L. T., Mlynarski S. N., Ferris G. E., Morken J. P. Angew. Chem., Int. Ed. 2012;51:521. - PMC - PubMed
    6. Goldfogel M. J., Roberts C. C., Meek S. J. J. Am. Chem. Soc. 2014;136:6227. - PubMed
    7. Chen T. Y., Tsutsumi R., Montgomery T. P., Volchkov I., Krische M. J. J. Am. Chem. Soc. 2015;137:1798. - PubMed
    8. Saini V., O'Dair M., Sigman M. S. J. Am. Chem. Soc. 2015;137:608. - PMC - PubMed
    9. Wu X., Lin H.-C., Li M.-L., Li L.-L., Han Z.-Y., Gong L.-Z. J. Am. Chem. Soc. 2015;137:13476. - PubMed
    10. Liu Y., Xie Y., Wang H., Huang H. J. Am. Chem. Soc. 2016;138:4314. - PubMed
    11. Korkis S. E., Burns D. J., Lam H. W. J. Am. Chem. Soc. 2016;138:12252. - PubMed
    12. Yang X.-H., Dong V. M. J. Am. Chem. Soc. 2017;139:1774. - PMC - PubMed
    13. Adamson N. J., Hull E., Malcolmson S. J. Am. Chem. Soc. 2017;139:7180. - PMC - PubMed
    14. Gui Y.-Y., Hu N., Chen X.-W., Liao L.-L., Ju T., Ye J.-H., Zhang Z., Li J., Yu D.-G. J. Am. Chem. Soc. 2017;139:17011. - PubMed
    1. Smejkal T., Han H., Breit B., Krische M. J. J. Am. Chem. Soc. 2009;131:10366. - PMC - PubMed
    2. Ebe Y., Nishimura T. J. Am. Chem. Soc. 2014;136:9284. - PubMed
    3. Chen Q.-A., Kim D. K., Dong V. M. J. Am. Chem. Soc. 2014;136:3772. - PMC - PubMed
    4. McCammant M. S., Sigman M. S. Chem. Sci. 2015;6:1355. - PMC - PubMed
    5. Nguyen K. D., Herkommer D., Krische M. J. J. Am. Chem. Soc. 2016;138:14210. - PMC - PubMed
    6. Oda S., Franke J., Krische M. J. Chem. Sci. 2016;7:136. - PMC - PubMed
    7. Jiang L., Cao P., Wang M., Chen B., Wang B., Liao J. Angew. Chem., Int. Ed. 2016;55:1385. - PubMed
    8. Li X., Meng F., Torker S., Shi Y., Hoveyda A. H. Angew. Chem., Int. Ed. 2016;55:9997. - PMC - PubMed
    9. Yang X.-H., Lu A., Dong V. M. J. Am. Chem. Soc. 2017;139:14049. - PMC - PubMed

LinkOut - more resources