Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2018 Jul 13;26(1):57.
doi: 10.1186/s13049-018-0525-y.

Repeated vital sign measurements in the emergency department predict patient deterioration within 72 hours: a prospective observational study

Affiliations
Observational Study

Repeated vital sign measurements in the emergency department predict patient deterioration within 72 hours: a prospective observational study

Vincent M Quinten et al. Scand J Trauma Resusc Emerg Med. .

Abstract

Background: More than one in five patients presenting to the emergency department (ED) with (suspected) infection or sepsis deteriorate within 72 h from admission. Surprisingly little is known about vital signs in relation to deterioration, especially in the ED. The aim of our study was to determine whether repeated vital sign measurements in the ED can differentiate between patients who will deteriorate within 72 h and patients who will not deteriorate.

Methods: We performed a prospective observational study in patients presenting with (suspected) infection or sepsis to the ED of our tertiary care teaching hospital. Vital signs (heart rate, mean arterial pressure (MAP), respiratory rate and body temperature) were measured in 30-min intervals during the first 3 h in the ED. Primary outcome was patient deterioration within 72 h from admission, defined as the development of acute kidney injury, liver failure, respiratory failure, intensive care unit admission or in-hospital mortality. We performed a logistic regression analysis using a base model including age, gender and comorbidities. Thereafter, we performed separate logistic regression analyses for each vital sign using the value at admission, the change over time and its variability. For each analysis, the odds ratios (OR) and area under the receiver operator curve (AUC) were calculated.

Results: In total 106 (29.5%) of the 359 patients deteriorated within 72 h from admission. Within this timeframe, 18.3% of the patients with infection and 32.9% of the patients with sepsis at ED presentation deteriorated. Associated with deterioration were: age (OR: 1.02), history of diabetes (OR: 1.90), heart rate (OR: 1.01), MAP (OR: 0.96) and respiratory rate (OR: 1.05) at admission, changes over time of MAP (OR: 1.04) and respiratory rate (OR: 1.44) as well as the variability of the MAP (OR: 1.06). Repeated measurements of heart rate and body temperature were not associated with deterioration.

Conclusions: Repeated vital sign measurements in the ED are better at identifying patients at risk for deterioration within 72 h from admission than single vital sign measurements at ED admission.

Keywords: Accident & emergency medicine; Patient deterioration; Sepsis; Vital signs.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

This study was carried out in accordance to the Declaration of Helsinki, the Dutch Agreement on Medical Treatment Act and the Dutch Personal Data Protection Act. The Institutional Review Board of the University Medical Center Groningen ruled that the Dutch Medical Research Involving Human Subjects Act is not applicable for this study and granted a waiver (METc 2015/164). All participants provided written informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow chart of patient recruitment. Consecutive adult medical patients visiting the emergency department of the University Medical Center Groningen between March 2016 and February 2017 were screened for eligibility
Fig. 2
Fig. 2
Receiver operating curves of the logistic regression models for patient deterioration using various repeated vital sign measurements in 30-min intervals during the first three hours of the patient’s stay in the emergency department. The base model includes age, gender and comorbidities. Model M1 contains the base model combined with the value of the vital sign at admission, model M2 contains model M1 combined with the change of the vital sign over time, model M3 contains model M1 combined with the variability of the vital. A) the ROC curve for the base model combined with heart rate (HR). B) the ROC curve for the base model combined with mean arterial pressure (MAP). C) the ROC curve for the base model combined with respiratory rate (RR). * Base model only including patients with respiratory rate at admission (AUC .638). D) the ROC curve for the base model combined with body temperature (BT)

References

    1. Glickman SW, Cairns CB, Otero RM, Woods CW, Tsalik EL, Langley RJ, et al. Disease progression in hemodynamically stable patients presenting to the emergency department with sepsis. Acad Emerg Med Wiley Online Library. 2010;17:383–390. doi: 10.1111/j.1553-2712.2010.00664.x. - DOI - PMC - PubMed
    1. Buchan CA, Bravi A, Seely AJE. Variability analysis and the diagnosis, management, and treatment of sepsis. Curr Infect Dis Rep. 2012;14:512–521. doi: 10.1007/s11908-012-0282-4. - DOI - PubMed
    1. Quinten VM, van Meurs M, Renes MH, Ligtenberg JJM, ter Maaten JC. Protocol of the SepsiVit study: a prospective observational study to determine whether continuous heart rate variability measurement during the first 48 hours of hospitalization provides an early warning for deterioration in patients presenting with infec. BMJ Open [Internet]. British Medical Journal Publishing Group; 2017 [cited 2017 Nov 20];7:1–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29151053 - PMC - PubMed
    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. [Internet]. Springer Berlin Heidelberg; 2017;43:304–377. Available from: https://link.springer.com/article/10.1007/s00134-017-4683-6 - PubMed
    1. Samraj RS, Zingarelli B, Wong HR. Role of biomarkers in sepsis care. Shock. Cincinnati. Ohio. 2013;40:358–365. - PMC - PubMed

Publication types