Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Aug:44:20-27.
doi: 10.1016/j.mib.2018.06.002. Epub 2018 Jul 11.

A unified conceptual framework for prediction and control of microbiomes

Affiliations
Review

A unified conceptual framework for prediction and control of microbiomes

James C Stegen et al. Curr Opin Microbiol. 2018 Aug.

Abstract

Microbiomes impact nearly all systems on Earth, and despite vast differences among systems, we contend that it is possible and highly beneficial to develop a unified conceptual framework for understanding microbiome dynamics that is applicable across systems. The ability to robustly predict and control environmental and human microbiomes would provide impactful opportunities to sustain and improve the health of ecosystems and humans alike. Doing so requires understanding the processes governing microbiome temporal dynamics, which currently presents an enormous challenge. We contend, however, that new opportunities can emerge by placing studies of both environmental and human microbiome temporal dynamics in the context of a unified conceptual framework. Our conceptual framework poses that factors influencing the temporal dynamics of microbiomes can be grouped into three broad categories: biotic and abiotic history, internal dynamics, and external forcing factors. Both environmental and human microbiome science study these factors, but not in a coordinated or consistent way. Here we discuss opportunities for greater crosstalk across these domains, such as leveraging specific ecological concepts from environmental microbiome science to guide optimization of strategies to manipulate human microbiomes towards improved health. To achieve unified understanding, it is necessary to have a common body of theory developed from explicit iteration between models and molecular-based characterization of microbiome dynamics across systems. Only through such model-experiment iteration will we eventually achieve prediction and control across microbiomes that impact ecosystem sustainability and human health.

PubMed Disclaimer

Publication types

LinkOut - more resources