Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 9;67(1):59-65.
doi: 10.5604/01.3001.0011.6144.

A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes

Affiliations
Free article

A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes

Masataka Aoki et al. Pol J Microbiol. .
Free article

Abstract

Ureolysis-driven microbially induced carbonate precipitation (MICP) has recently received attention for its potential biotechnological applications. However, information on the enrichment and production of ureolytic microbes by using bioreactor systems is limited. Here, we report a low-tech down-flow hanging sponge (DHS) bioreactor system for the enrichment and production of ureolytic microbes. Using this bioreactor system and a yeast extract-based medium containing 0.17 M urea, ureolytic microbes with high potential urease activity (> 10 μmol urea hydrolyzed per min per ml of enrichment culture) were repeatedly enriched under non-sterile conditions. In addition, the ureolytic enrichment obtained in this study showed in vitro calcium carbonate precipitation. Fluorescence in situ hybridization analysis showed the existence of bacteria of the phylum Firmicutes in the bioreactor system. Our data demonstrate that this DHS bioreactor system is a useful system for the enrichment and production of ureolytic microbes for MICP applications.

Keywords: DHS bioreactor system; enrichment culture; microbially induced carbonate precipitation (MICP); ureolytic microbes.

PubMed Disclaimer