Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 17;18(1):335.
doi: 10.1186/s12879-018-3250-2.

Epidemiological characterization of respiratory tract infections caused by Mycoplasma pneumoniae during epidemic and post-epidemic periods in North China, from 2011 to 2016

Affiliations

Epidemiological characterization of respiratory tract infections caused by Mycoplasma pneumoniae during epidemic and post-epidemic periods in North China, from 2011 to 2016

Jiuxin Qu et al. BMC Infect Dis. .

Abstract

Background: Mycoplasma pneumoniae (M. pneumoniae) is a commonly causative pathogen for respiratory tract infections (RTIs) in humans. The epidemiological features of M. pneumoniae infections during post-epidemic, including age distribution and the seasonality of the patients, are not well investigated.

Methods: We retrospectively analyzed the clinical data of 7835 consecutive RTIs patients (3852 adults and 3983 children) who visited a teaching hospital, and defined an epidemic (2011-2013) and a post-epidemic period (2014-2016). M. pneumoniae was detected by fluorescence-quantatitive PCR in respiratory samples. Informed consent was obtained by all adults and the legal representatives of patients aged < 18 years, and the study was approved by Institutional Review Board of Beijing Chao-Yang Hospital (project approval number 10-KE-49).

Results: The median (IQR) age was 16 (53) years (range < 0-105 years). The M. pneumoniae positive rate was 14.4% (21.2%, epidemic; 6.7%, post-epidemic), with seasonal peaks from late summer to autumn during epidemic, and from fall to winter during post-epidemic period, which was highest in children aged 7-17 years. In epidemic, no statistical difference was found in the positive rates between children and adults among most months (except February, July and August), neither for the positive rates among age groups (P = 0.801). However, in post-epidemic period, significant differences were observed in the positive rates between children and adults in nearly every month (P< 0.05 or P< 0.001, except May), as well as in the positive rates among age groups (P< 0.001). Most of the older patient admissions and all of ICU admissions occurred during the epidemic.

Conclusions: Different patterns of age distribution and seasonality of M. pneumoniae RTIs between epidemic and post-epidemic periods were reported. Our results suggest that M. pneumoniae should be considered as a possible pathogen in pneumonia patients admitted to the ICU in the setting of an epidemic.

Keywords: Epidemic; Epidemiology; Mycoplasma pneumoniae; Post-epidemic; Respiratory tract infection.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board of Beijing Chao-Yang Hospital (project approval number 10-KE-49) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Participant consent was written by the adults or the legal representatives of patients aged < 18 years and informed consent forms were archived.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Monthly distribution of total cases and M. pneumoniae infected patients
Fig. 2
Fig. 2
Monthly cases and positivity of M. pneumoniae in the epidemic, post-epidemic and the study periods

References

    1. Atkinson TP, Balish MF, Waites KB. Epidemiology, clinical manifestations, pathogenesis and laboratory detection of mycoplasma pneumoniae infections. FEMS Microbiol Rev. 2008;32(6):956–973. doi: 10.1111/j.1574-6976.2008.00129.x. - DOI - PubMed
    1. Cao B, Zhao CJ, Yin YD, Zhao F, Song SF, Bai L, Zhang JZ, Liu YM, Zhang YY, Wang H, et al. High prevalence of macrolide resistance in mycoplasma pneumoniae isolates from adult and adolescent patients with respiratory tract infection in China. Clin Infect Dis. 2010;51(2):189–194. doi: 10.1086/653535. - DOI - PubMed
    1. Waites KB, Bébéar CM, Robertson JA, Talkington DF, Kenny GE. Cumitech 34, Laboratory diagnosis of mycoplasmal infections. Coordinating ed, Nolte FS. Washington, DC: ASM Press; 2001.
    1. Chalker V, Stocki T, Litt D, Bermingham A, Watson J, Fleming D, Harrison T. Increased detection of mycoplasma pneumoniae infection in children in England and Wales, October 2011 to January 2012. Euro Surveill. 2012;17(6). - PubMed
    1. Eibach D, Casalegno JS, Escuret V, Billaud G, Mekki Y, Frobert E, Bouscambert-Duchamp M, Lina B, Morfin F. Increased detection of mycoplasma pneumoniae infection in children, Lyon, France, 2010 to 2011. Euro Surveill. 2012;17(8). - PubMed

MeSH terms

LinkOut - more resources