Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun;9(1):49-73.
doi: 10.5598/imafungus.2018.09.01.05. Epub 2018 Mar 20.

Ustilago species causing leaf-stripe smut revisited

Affiliations

Ustilago species causing leaf-stripe smut revisited

Julia Kruse et al. IMA Fungus. 2018 Jun.

Abstract

Leaf-stripe smuts on grasses are a highly polyphyletic group within Ustilaginomycotina, occurring in three genera, Tilletia, Urocystis, and Ustilago. Currently more than 12 Ustilago species inciting stripe smuts are recognised. The majority belong to the Ustilago striiformis-complex, with about 30 different taxa described from 165 different plant species. This study aims to assess whether host distinct-lineages can be observed amongst the Ustilago leaf-stripe smuts using nine different loci on a representative set. Phylogenetic reconstructions supported the monophyly of the Ustilago striiformis-complex that causes leaf-stripe and the polyphyly of other leaf-stripe smuts within Ustilago. Furthermore, smut specimens from the same host genus generally clustered together in well-supported clades that often had available species names for these lineages. In addition to already-named lineages, three new lineages were observed, and described as new species on the basis of host specificity and molecular differences: namely Ustilago jagei sp. nov. on Agrostis stolonifera, U. kummeri sp. nov. on Bromus inermis, and U. neocopinata sp. nov. on Dactylis glomerata.

Keywords: DNA-based taxonomy; Ustilaginaceae; host specificity; molecular species discrimination; multigene phylogeny; new taxa; species complex.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Phylogenetic tree based on Minimum Evolution analysis of nine loci (ITS, myosin, map, rpl3, tif2, ssc1, sdh1, rpl4A, atp2). Numbers on branches denote support in Minimum Evolution, Maximum Likelihood and Bayesian Analyses, in the respective order. Values below 55 % are denoted by ‘-‘. The bar indicates the number of substitutions per site.
Fig. 2.
Fig. 2.
Phylogenetic tree based on Minimum Evolution analysis of three loci (ITS, ssc1, atp2). Numbers on branches denote support in Minimum Evolution, Maximum Likelihood and Bayesian Analyses, in the respective order. Values below 55 % are denoted by ‘-‘.. The bar indicates the number of substitutions per site.
Fig. 3.
Fig. 3.
Phylogenetic tree based on Minimum Evolution analysis of nine loci (ITS, myosin, map, rpl3, tif2, ssc1, sdh1, rpl4A, atp2) detailed showing the Ustilago striiformis-complex with the outgroup U. cynodontis. Numbers on branches denote support in Minimum Evolution, Maximum Likelihood and Bayesian Analyses, in the respective order. Values below 55 % are denoted by ‘-‘. The bar indicates the number of substitutions per site.
Fig. 4.
Fig. 4.
Phylogenetic tree based on Minimum Evolution analysis of three loci (ITS, ssc1, atp2) detailed showing the Ustilago striiformis-complex with the outgroup U. cynodontis. Numbers on branches denote support in Minimum Evolution, Maximum Likelihood and Bayesian Analyses, in the respective order. Values below 55 % are denoted by ‘-‘. The bar indicates the number of substitutions per site.
Fig. 5.
Fig. 5.
Sori and spores of Ustilago jagei (A–B), U. denotarisii (C–D), U. neocopinata (E–F), U. salweyi (G–H), U. kummeri (I–J), and U. serpens s. str. (K–L). A. Sori of U. jagei on Agrostis stolonifera (GLM-F047379); B. Teliospores seen by LM; C. Sori of U. denotarisii on Arrhenatherum elatius (GLM-F105836); D. Teliospores seen by LM; E. Sori of U. neocopinata on Dactylis glomerata (GLM-F107413); F. Teliospores seen by LM; G. Sori of U. salweyi on Holcus lanatus (GLM-F107417); H. Teliospores seen by LM; I. Sori of U. kummeri on Bromus inermis (GLM-F107435); J. Teliospores seen by LM; K. Sori of U. serpens s. str. on Elymus repens (GLM-F105827); and L. Teliospores seen by LM.
Fig. 6.
Fig. 6.
Alignment consensus sequences for the alignments used in this study with positions of diagnostic bases highlighted in bold face.

References

    1. Amundsen K, Warnke S. (2012) Agrostis species relationships based on trnL-trnF and atpI-atpH Intergenic Spacer Regions. Hortscience 47: 18–24.
    1. Begerow D, Stoll M, Bauer R. (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98: 906–916. - PubMed
    1. Berkeley MJ, Broome CE. (1850) Notices of British fungi. Annals and Magazine of Natural History 5: 455–467.
    1. Catalán P, Torrecilla P, Ángel J, Rodríguez L, Olmstead RG. (2004) Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL–F sequences. Molecular Phylogenetics and Evolution 31: 517–541. - PubMed
    1. Choi Y-J, Thines M. (2015) Host jumps and radiation, not co-divergence drives diversification of obligate pathogens: a case study in downy mildews and Asteraceae. PLoS ONE 10(7): e0133655. - PMC - PubMed

LinkOut - more resources