Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 17;24(3):766-780.
doi: 10.1016/j.celrep.2018.06.057.

Differences in Cell Cycle Status Underlie Transcriptional Heterogeneity in the HSC Compartment

Affiliations
Free article

Differences in Cell Cycle Status Underlie Transcriptional Heterogeneity in the HSC Compartment

Felicia Kathrine Bratt Lauridsen et al. Cell Rep. .
Free article

Abstract

Hematopoietic stem cells (HSCs) are considered a heterogeneous cell population. To further resolve the HSC compartment, we characterized a retinoic acid (RA) reporter mouse line. Sub-fractionation of the HSC compartment in RA-CFP reporter mice demonstrated that RA-CFP-dim HSCs were largely non-proliferative and displayed superior engraftment potential in comparison with RA-CFP-bright HSCs. Gene expression analysis demonstrated higher expression of RA-target genes in RA-CFP-dim HSCs, in contrast to the RA-CFP reporter expression, but both RA-CFP-dim and RA-CFP-bright HSCs responded efficiently to RA in vitro. Single-cell RNA sequencing (RNA-seq) of >1,200 HSCs showed that differences in cell cycle activity constituted the main driver of transcriptional heterogeneity in HSCs. Moreover, further analysis of the single-cell RNA-seq data revealed that stochastic low-level expression of distinct lineage-affiliated transcriptional programs is a common feature of HSCs. Collectively, this work demonstrates the utility of the RA-CFP reporter line as a tool for the isolation of superior HSCs.

Keywords: hematopoiesis; hematopoietic stem cells; retinoic acid; single-cell RNA-sequencing; transcriptional heterogeneity.

PubMed Disclaimer

Publication types

MeSH terms