Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 13;19(8):3377-3389.
doi: 10.1021/acs.biomac.8b00676. Epub 2018 Jul 19.

Synthesis of Zwitterionic Pluronic Analogs

Synthesis of Zwitterionic Pluronic Analogs

Matthew Skinner et al. Biomacromolecules. .

Abstract

Novel polymer amphiphiles with chemical structures designed as zwitterionic analogs of Pluronic block copolymers were prepared by controlled free radical polymerization of phosphorylcholine (PC) or choline phosphate (CP) methacrylate monomers from a difunctional poly(propylene oxide) (PPO) macroinitiator. Well-defined, water-dispersible zwitterionic triblock copolymers, or "zwitteronics", were prepared with PC content ranging from 5 to 47 mol percent and composition-independent surfactant characteristics in water, which deviate from the properties of conventional Pluronic amphiphiles. These PC-zwitteronics assembled into nanoparticles in water, with tunable sizes and critical aggregation concentrations (CACs) based on their hydrophilic-lipophilic balance (HLB). Owing to the lower critical solution temperature (LCST) miscibility of the hydrophobic PPO block in water, PC-zwitteronics exhibited thermoreversible aqueous solubility tuned by block copolymer composition. The chemical versatility of this approach was demonstrated by embedding functionality, in the form of alkyne groups, directly into the zwitterion moieties. These alkynes proved ideal for cross-linking the zwitteronic nanoparticles and for generating nanoparticle-cross-linked hydrogels using UV-initiated thiol-yne "click" chemistry.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources