Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 20;59(4):AMD31-AMD40.
doi: 10.1167/iovs.18-24122.

The Proteomic Landscape in the Vitreous of Patients With Age-Related and Diabetic Retinal Disease

Affiliations
Free article

The Proteomic Landscape in the Vitreous of Patients With Age-Related and Diabetic Retinal Disease

Christian Schori et al. Invest Ophthalmol Vis Sci. .
Free article

Abstract

Purpose: In contrast to neovascular AMD (nAMD), no treatment option exists for dry AMD. Hence, the identification of specific biomarkers is required to facilitate diagnosis and therapy of dry AMD.

Methods: The proteome of 34 vitreous humor samples (dry AMD: n = 6; nAMD: n = 10; proliferative diabetic retinopathy [PDR]: n = 9; epiretinal membrane [ERM]: n = 9) was analyzed by liquid chromatography coupled mass spectrometry. Then, label-free relative quantification of dry AMD, nAMD, and PDR relative to ERM, which was defined as the reference group, was performed. Application of a bioinformatics pipeline further analyzed the vitreous proteome by cluster and gene set enrichment analysis. A selection of differentially regulated proteins was validated by ELISA.

Results: A total of 677 proteins were identified in the vitreous of the four patient groups and quantified relatively to ERM. Different clusters of regulated proteins for each patient group were identified and showed characteristic enrichment of specific pathways including "oxidative stress" for dry AMD, "focal adhesion" for nAMD, and "complement and coagulation cascade" for PDR patients. We identified cholinesterase (CHLE) to be specifically upregulated in dry AMD and ribonuclease (pancreatic; RNAS1) together with serine carboxypeptidase (probable; CPVL) to be upregulated in both forms of AMD.

Conclusions: The described pathways specific for the different patient groups and the identification of characteristic differentially regulated proteins provide a first step toward the definition of biomarkers for dry AMD. The presented data will facilitate the investigation of mechanistic connections of proteins to the respective disease.

PubMed Disclaimer

Publication types

LinkOut - more resources