Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul 20;62(3):409-421.
doi: 10.1042/EBC20170109. Print 2018 Jul 20.

Neuroimaging in mitochondrial disorders

Affiliations
Review

Neuroimaging in mitochondrial disorders

Mario Mascalchi et al. Essays Biochem. .

Abstract

MRI and 1H magnetic resonance spectroscopy (1HMRS) are the main neuroimaging methods to study mitochondrial diseases. MRI can demonstrate seven 'elementary' central nervous system (CNS) abnormalities in these disorders, including diffuse cerebellar atrophy, cerebral atrophy, symmetric signal changes in subcortical structures (basal ganglia, brainstem, cerebellum), asymmetric signal changes in the cerebral cortex and subcortical white matter, leukoencephalopathy, and symmetric signal changes in the optic nerve and the spinal cord. These elementary MRI abnormalities can be variably combined in the single patient, often beyond what can be expected based on the classically known clinical-pathological patterns. However, a normal brain MRI is also possible. 1HMRS has a diagnostic role in patients with suspected mitochondrial encephalopathy, especially in the acute phase, as it can detect within the lesions, but also in normal appearing nervous tissue or in the ventricular cerebrospinal fluid (CSF), an abnormally prominent lactate peak, reflecting failure of the respiratory chain with a shift from the Krebs cycle to anaerobic glycolysis. So far, studies correlating MRI findings with genotype in mitochondrial disease have been possible only in small samples and would greatly benefit from data pooling. MRI and 1HMRS have provided important information on the pathophysiology of CNS damage in mitochondrial diseases by enabling in vivo non-invasive assessment of tissue abnormalities, the associated changes of blood perfusion and cellular metabolic derangement. MRI and 1HMRS are expected to serve as surrogate biomarkers in trials investigating therapeutic options in mitochondrial disease.

Keywords: NMR spectroscopy; mitochondrial dysfunction; neuroimaging.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources