Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep 1;94(9).
doi: 10.1093/femsec/fiy099.

Alpine soil microbial ecology in a changing world

Affiliations
Review

Alpine soil microbial ecology in a changing world

Jonathan Donhauser et al. FEMS Microbiol Ecol. .

Erratum in

Abstract

Climate change has a disproportionally large impact on alpine soil ecosystems, leading to pronounced changes in soil microbial diversity and function associated with effects on biogeochemical processes at the local and supraregional scales. However, due to restricted accessibility, high-altitude soils remain largely understudied and a considerable heterogeneity hampers the comparability of different alpine studies. Here, we highlight differences and similarities between alpine and arctic ecosystems, and we discuss the impact of climatic variables and associated vegetation and soil properties on microbial ecology. We consider how microbial alpha-diversity, community structures and function change along altitudinal gradients and with other topographic features such as slope aspect. In addition, we focus on alpine permafrost soils, harboring a surprisingly large unknown microbial diversity and on microbial succession along glacier forefield chronosequences constituting the most thoroughly studied alpine habitat. Finally, highlighting experimental approaches, we present climate change studies showing shifts in microbial community structures and function in response to warming and altered moisture, interestingly with some contradiction. Collectively, despite harsh environmental conditions, many specially adapted microorganisms are able to thrive in alpine environments. Their community structures strongly correlate with climatic, vegetation and soil properties and thus closely mirror the complexity and small-scale heterogeneity of alpine soils.

PubMed Disclaimer

References

Publication types