Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Nov 20;186(2):321-35.
doi: 10.1016/0022-2836(85)90108-1.

Organization of the actin multigene family of Dictyostelium discoideum and analysis of variability in the protein coding regions

Comparative Study

Organization of the actin multigene family of Dictyostelium discoideum and analysis of variability in the protein coding regions

P Romans et al. J Mol Biol. .

Abstract

There are 17 to 20 actin genes in the genome of the cellular slime mold Dictyostelium discoideum. Genomic clones of 15 of the genes have been isolated. Extensive nucleotide sequence within the protein-coding regions has been determined, including the complete nucleotide sequence of four genes representing the three distinct evolutionary groups of Dictyostelium actin genes. All are similar to mammalian cytoplasmic actins at diagnostic amino acid positions, and there is generally less variability among Dictyostelium actin genes than among Drosophila actin genes. Two genes, Actins 3-sub 1 and 3-sub 2 differ substantially from all the rest in terms of replacement amino acid substitutions and probably encode actin-related proteins rather than bona fide actins. Each contains several amino acid substitutions that should alter the secondary structure of the resulting proteins, and Actin 3-sub 2 encodes four additional amino acids at the C terminus. This gene is as divergent from other Dictyostelium actin genes as is the yeast or a soybean actin gene. At present, evidence suggests that all 15 genes examined are expressed, except the previously identified Actin 2-sub 2. We suggest that Dictyostelium might maintain a high number of functional actin genes for the purpose of regulating the level of actin synthesis within narrow limits, rather than because most genes perform different functions.

PubMed Disclaimer

Publication types

LinkOut - more resources