Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct;220(2):395-408.
doi: 10.1111/nph.15350. Epub 2018 Jul 23.

Maize domestication and gene interaction

Affiliations
Free article
Review

Maize domestication and gene interaction

Michelle C Stitzer et al. New Phytol. 2018 Oct.
Free article

Abstract

Contents Summary 395 I. Introduction 395 II. The genetic basis of maize domestication 396 III. The tempo of maize domestication 401 IV. Genetic interactions and selection during maize domestication 401 V. Gene networks of maize domestication alleles 404 VI. Implications of gene interactions on evolution and selection404 VII. Conclusions 405 Acknowledgements 405 References 405 SUMMARY: Domestication is a tractable system for following evolutionary change. Under domestication, wild populations respond to shifting selective pressures, resulting in adaptation to the new ecological niche of cultivation. Owing to the important role of domesticated crops in human nutrition and agriculture, the ancestry and selection pressures transforming a wild plant into a domesticate have been extensively studied. In Zea mays, morphological, genetic and genomic studies have elucidated how a wild plant, the teosinte Z. mays subsp. parviglumis, was transformed into the domesticate Z. mays subsp. mays. Five major morphological differences distinguish these two subspecies, and careful genetic dissection has pinpointed the molecular changes responsible for several of these traits. But maize domestication was a consequence of more than just five genes, and regions throughout the genome contribute. The impacts of these additional regions are contingent on genetic background, both the interactions between alleles of a single gene and among alleles of the multiple genes that modulate phenotypes. Key genetic interactions include dominance relationships, epistatic interactions and pleiotropic constraint, including how these variants are connected in gene networks. Here, we review the role of gene interactions in generating the dramatic phenotypic evolution seen in the transition from teosinte to maize.

Keywords: domestication; dominance; epistasis; gene interaction; maize; pleiotropy; teosinte.

PubMed Disclaimer

Publication types

LinkOut - more resources