Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug:70:154-165.
doi: 10.1016/j.jes.2017.11.028. Epub 2017 Dec 10.

Relating Cd2+ binding by humic acids to molecular weight: A modeling and spectroscopic study

Affiliations

Relating Cd2+ binding by humic acids to molecular weight: A modeling and spectroscopic study

Hongcheng Bai et al. J Environ Sci (China). 2018 Aug.

Abstract

Molecular weight (Mw) is a fundamental property of humic acids (HAs), which considerably affect the mobility and speciation of heavy metals in the environment. In this study, soil humic acid (HA) extracted from Jinyun Mountain, Chongqing was ultra-filtered into four fractions according to the molecular weight, and their properties were characterized. Complexation of cadmium was investigated by titration experiments. For the first time, Langmuir and non-ideal competitive adsorption-Donna (NICA-Donnan) models combined with fluorescence excitation-emission matrix (EEM) quenching were employed to elucidate the binding characteristics of individual Mw fractions of HA. The results showed that the concentration of acidic functional groups decreased with increasing Mw, especially the phenolic groups. The humification degree and aliphaticity increased with increasing Mw as indicated by elemental composition analysis and FT-IR spectra. The binding capacity of Cd2+ to Mw fractions of HA followed the order UF1 (<5kDa)>UF2 (5-10kDa)>UF4 (>30kDa)>UF3 (10-30kDa). Moreover, the distribution of cadmium speciation indicated that the phenolic groups were responsible for the variations in binding of Cd2+ among different Mw fractions. The results of fluorescence quenching illustrated that the binding capacity of Cd2+ to Mw fractions was controlled by the content of functional groups, while the binding affinity was largely influenced by structural factors. The results provide a better understanding of the roles that different HA Mw fractions play in heavy metal binding, which has important implications in the control of heavy metal migration and bio-toxicity.

Keywords: Cadmium; Fluorescence excitation-emission matrix quenching; Humic acid; Molecular weight; NICA-Donnan.

PubMed Disclaimer

LinkOut - more resources