Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Aug:116:505-517.
doi: 10.1016/j.wneu.2018.04.022.

Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance

Affiliations
Review

Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance

Evan K Noch et al. World Neurosurg. 2018 Aug.

Abstract

Glioblastoma is one of the most lethal human cancers, with poor survival despite surgery, radiation treatment, and chemotherapy. Advances in the treatment of this type of brain tumor are limited because of several resistance mechanisms. Such mechanisms involve limited drug entry into the central nervous system compartment by the blood-brain barrier and by actions of the normal brain to counteract tumor-targeting medications. In addition, the vast heterogeneity in glioblastoma contributes to significant therapeutic resistance by preventing adequate control of the entire tumor mass by a single drug and by facilitating escape mechanisms from targeted agents. The stem cell-like characteristics of glioblastoma promote resistance to chemotherapy, radiation, and immunotherapy through upregulation of efflux transporters, promotion of glioblastoma stem cell proliferation in neurogenic zones, and immune suppression, respectively. Metabolic cascades in glioblastoma prevent effective treatments through the optimization of glucose use, the use of alternative nutrient precursors for energy production, and the induction of hypoxia to enhance tumor growth. In the era of precision medicine, an assortment of molecular techniques is being developed to target an individual's unique tumor, with the hope that this personalized strategy will bypass therapeutic resistance. Although each resistance mechanism presents an array of challenges to effective treatment of glioblastoma, as the field recognizes and addresses these difficulties, future treatments may have more efficacy and promise for patients with glioblastoma.

Keywords: Glioblastoma; Intratumoral; Temozolomide.

PubMed Disclaimer