Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul 24:8:43.
doi: 10.1186/s13578-018-0242-2. eCollection 2018.

Role of MCM2-7 protein phosphorylation in human cancer cells

Affiliations
Review

Role of MCM2-7 protein phosphorylation in human cancer cells

Liangru Fei et al. Cell Biosci. .

Abstract

A heterohexameric complex composed of minichromosome maintenance protein 2-7 (MCM2-7), which acts as a key replicative enzyme in eukaryotes, is crucial for initiating DNA synthesis only once per cell cycle. The MCM complex remains inactive through the G1 phase, until the S phase, when it is activated to initiate replication. During the transition from the G1 to S phase, the MCM undergoes multisite phosphorylation, an important change that promotes subsequent assembly of other replisome members. Phosphorylation is crucial for the regulation of MCM activity and function. MCMs can be phosphorylated by multiple kinases and these phosphorylation events are involved not only in DNA replication but also cell cycle progression and checkpoint response. Dysfunctional phosphorylation of MCMs appears to correlate with the occurrence and development of cancers. In this review, we summarize the currently available data regarding the regulatory mechanisms and functional consequences of MCM phosphorylation and seek the probability that protein kinase inhibitor can be used therapeutically to target MCM phosphorylation in cancer.

Keywords: Cell cycle; Checkpoint response; DNA replication; MCM; Phosphorylation.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic diagram summarizing the roles of MCM phosphorylation mediated by three classes of kinases Cdc7, Cdk and ATM/ATR. Although many functional crosstalks exist between MCM kinases-mediated phosphorylation events, evidence shows that Cdc7-dependent MCM phosphorylation primarily promotes the initiation of DNA replication, Cdk-dependent MCM phosphorylation mainly contributes to cell cycle progression regulation, and ATM/ATR-dependent MCM phosphorylation primarily responds to replication stress. MCM phosphorylation contributes to these various functions primarily by affecting MCM complex formation, chromatin binding, and (or) helicase activity
Fig. 2
Fig. 2
Roles of MCM phosphorylation mediated by p56Lyn, Akt and ILK in cancer development. Phosphorylation of MCM7 mediated by EGFR-p56Lyn and RACK1-Akt promotes MCM complex assembly and chromatin loading, therefore enhancing DNA synthesis and cancer cell proliferation. In contrast, MCM7 phosphorylation mediated by ITGA7-ILK axis reduces MCM7 chromatin association, inhibiting cell growth

Similar articles

Cited by

References

    1. Leman AR, Noguchi E. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes-Basel. 2013;4:1–32. doi: 10.3390/genes4010001. - DOI - PMC - PubMed
    1. Waga S, Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 1998;67:721–751. doi: 10.1146/annurev.biochem.67.1.721. - DOI - PubMed
    1. Barry ER, Bell SD. DNA replication in the archaea. Microbiol Mol Biol Rev. 2006;70:876–887. doi: 10.1128/MMBR.00029-06. - DOI - PMC - PubMed
    1. Garg P, Burgers PMJ. DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol. 2005;40:115–128. doi: 10.1080/10409230590935433. - DOI - PubMed
    1. Johnson A, O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem. 2005;74:283–315. doi: 10.1146/annurev.biochem.73.011303.073859. - DOI - PubMed

LinkOut - more resources