Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep-Oct;44(5):424-432.
doi: 10.1590/S1806-37562017000000209. Epub 2018 Jul 30.

The pulmonary microbiome: challenges of a new paradigm

[Article in English, Portuguese]
Affiliations
Review

The pulmonary microbiome: challenges of a new paradigm

[Article in English, Portuguese]
André Nathan Costa et al. J Bras Pneumol. 2018 Sep-Oct.

Abstract

The study of the human microbiome-and, more recently, that of the respiratory system-by means of sophisticated molecular biology techniques, has revealed the immense diversity of microbial colonization in humans, in human health, and in various diseases. Apparently, contrary to what has been believed, there can be nonpathogenic colonization of the lungs by microorganisms such as bacteria, fungi, and viruses. Although this physiological lung microbiome presents low colony density, it presents high diversity. However, some pathological conditions lead to a loss of that diversity, with increasing concentrations of some bacterial genera, to the detriment of others. Although we possess qualitative knowledge of the bacteria present in the lungs in different states of health or disease, that knowledge has advanced to an understanding of the interaction of this microbiota with the local and systemic immune systems, through which it modulates the immune response. Given this intrinsic relationship between the microbiota and the lungs, studies have put forth new concepts about the pathophysiological mechanisms of homeostasis in the respiratory system and the potential dysbiosis in some diseases, such as cystic fibrosis, COPD, asthma, and interstitial lung disease. This departure from the paradigm regarding knowledge of the lung microbiota has made it imperative to improve understanding of the role of the microbiome, in order to identify possible therapeutic targets and to develop innovative clinical approaches. Through this new leap of knowledge, the results of preliminary studies could translate to benefits for our patients.

O estudo do microbioma humano - e, mais recentemente, o do sistema respiratório - através de sofisticadas técnicas de biologia molecular, desvendou a imensa diversidade de colonização microbiana nos seres humanos, sejam saudáveis, sejam portadores de diferentes doenças. Aparentemente, ao contrário do que se acreditava, existe uma colonização não patogênica dos pulmões por microrganismos, como bactérias, fungos e vírus. Esse microbioma pulmonar fisiológico apresenta uma densidade baixa de colônias, porém uma elevada diversidade; por outro lado, alguns estados patológicos levam a uma perda dessa diversidade, com aumento da concentração de alguns gêneros bacterianos em detrimento de outros. Ainda, além do conhecimento qualitativo das bactérias presentes no pulmão em diversos estados de saúde ou de doença, o conhecimento avança para o entendimento da interação que essa microbiota tem com o sistema imune local e sistêmico, modulando a resposta imunológica. Compreendendo essa intrínseca relação entre a microbiota e os pulmões, estudos apresentam novos conceitos sobre os mecanismos fisiopatogênicos da homeostase do sistema respiratório e a possível disbiose em estado de algumas doenças, como fibrose cística, DPOC, asma e doenças intersticiais. Essa quebra de paradigma do conhecimento da microbiota presente nos pulmões fez com que se torne premente entender melhor o papel do microbioma para identificar possíveis alvos terapêuticos e abordagens clínicas inovadoras. Através desse novo salto de conhecimento é que os resultados dos estudos preliminares poderão ser traduzidos em benefícios aos nossos pacientes.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Sequence of events leading to the recognition of the microbiome at a given site. OTU: operational taxonomic unit.
Figure 2
Figure 2. Determinants of the lung microbiome and the intestine-lung axis. The composition of the human microbiota is determined by the association of environmental factors, the host immune response, and genetic characteristics. The intestine microbiota, which is incomparably greater in size than the lung microbiota, can influence the lower respiratory tract both directly, through microaspiration, and indirectly, through modulation of the immune response as a result of the production of bacterial metabolites and their interaction with the host inflammatory cells. Inhalation of external agents is also a pathway to lung colonization and will depend, as will intestinal tract colonization, on local factors, such as oxygen tension, tissue pH, blood perfusion, nutrient concentration, proper mucociliary transport, and disruption of the lung architecture.
Figure 3
Figure 3. Determinants of the microbiome of the respiratory system: microbial immigration, elimination, and proliferation. In healthy individuals, the microbiome is determined primarily by immigration and elimination. In severe lung disease, local growth conditions are determinants of the composition of the microbiome.
Figure 4
Figure 4. Microbiota interface and interaction with local immunity. Members of the microbiota, in association with environmental non-viable particulate antigens, are continuously sampled by the mucosa and processed by dendritic cells and macrophages, with subsequent formation of memory or activation of T and B effector cells. Therefore, various commensal microorganisms influence the innate immunity and the adaptive immunity.

References

    1. Beck JM. ABCs of the lung microbiome. Ann Am Thorac Soc. 2014;11(1):S3–S6. doi: 10.1513/AnnalsATS.201306-188MG. - DOI - PMC - PubMed
    1. Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol. 2014;14(12):827–835. doi: 10.1038/nri3769. - DOI - PubMed
    1. Rogers GB, Shaw D, Marsh RL, Carroll MP, Serisier DJ, Bruce KD. Respiratory microbiota addressing clinical questions, informing clinical practice. Thorax. 2015;70(1):74–81. doi: 10.1136/thoraxjnl-2014-205826. - DOI - PMC - PubMed
    1. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. doi: 10.1038/nature11234. - DOI - PMC - PubMed
    1. Li K, Bihan M, Yooseph S, Methé BA. Analyses of the microbial diversity across the human microbiome. PLoS One. 2012;7(6):e32118. doi: 10.1371/journal.pone.0032118. - DOI - PMC - PubMed