Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 14;115(33):E7863-E7870.
doi: 10.1073/pnas.1800042115. Epub 2018 Aug 2.

Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

Daniel S Karp  1 Rebecca Chaplin-Kramer  2 Timothy D Meehan  3 Emily A Martin  4 Fabrice DeClerck  5 Heather Grab  6 Claudio Gratton  7 Lauren Hunt  8 Ashley E Larsen  9 Alejandra Martínez-Salinas  10 Megan E O'Rourke  11 Adrien Rusch  12 Katja Poveda  6 Mattias Jonsson  13 Jay A Rosenheim  14 Nancy A Schellhorn  15 Teja Tscharntke  16 Stephen D Wratten  17 Wei Zhang  18 Aaron L Iverson  6 Lynn S Adler  19 Matthias Albrecht  20 Audrey Alignier  21 Gina M Angelella  11 Muhammad Zubair Anjum  22 Jacques Avelino  23 Péter Batáry  16 Johannes M Baveco  24 Felix J J A Bianchi  25 Klaus Birkhofer  26 Eric W Bohnenblust  27 Riccardo Bommarco  13 Michael J Brewer  28 Berta Caballero-López  29 Yves Carrière  30 Luísa G Carvalheiro  31 Luis Cayuela  32 Mary Centrella  6 Aleksandar Ćetković  33 Dominic Charles Henri  34 Ariane Chabert  35 Alejandro C Costamagna  36 Aldo De la Mora  37 Joop de Kraker  38 Nicolas Desneux  39 Eva Diehl  40 Tim Diekötter  41 Carsten F Dormann  42 James O Eckberg  43 Martin H Entling  44 Daniela Fiedler  45 Pierre Franck  46 F J Frank van Veen  47 Thomas Frank  48 Vesna Gagic  15 Michael P D Garratt  49 Awraris Getachew  50 David J Gonthier  51 Peter B Goodell  52 Ignazio Graziosi  53 Russell L Groves  7 Geoff M Gurr  54 Zachary Hajian-Forooshani  55 George E Heimpel  56 John D Herrmann  41 Anders S Huseth  57 Diego J Inclán  58 Adam J Ingrao  59 Phirun Iv  60 Katja Jacot  20 Gregg A Johnson  43 Laura Jones  15 Marina Kaiser  33 Joe M Kaser  56 Tamar Keasar  61 Tania N Kim  62 Miriam Kishinevsky  63 Douglas A Landis  59 Blas Lavandero  64 Claire Lavigne  46 Anne Le Ralec  65 Debissa Lemessa  66 Deborah K Letourneau  67 Heidi Liere  62 Yanhui Lu  68 Yael Lubin  69 Tim Luttermoser  6 Bea Maas  70 Kevi Mace  71 Filipe Madeira  72 Viktoria Mader  40 Anne Marie Cortesero  73 Lorenzo Marini  74 Eliana Martinez  75 Holly M Martinson  76 Philippe Menozzi  77 Matthew G E Mitchell  78 Tadashi Miyashita  79 Gonzalo A R Molina  80 Marco A Molina-Montenegro  81 Matthew E O'Neal  82 Itai Opatovsky  83 Sebaastian Ortiz-Martinez  64 Michael Nash  84 Örjan Östman  85 Annie Ouin  86 Damie Pak  87 Daniel Paredes  88 Soroush Parsa  89 Hazel Parry  15 Ricardo Perez-Alvarez  6 David J Perović  54 Julie A Peterson  56 Sandrine Petit  90 Stacy M Philpott  67 Manuel Plantegenest  65 Milan Plećaš  33 Therese Pluess  91 Xavier Pons  72 Simon G Potts  49 Richard F Pywell  92 David W Ragsdale  93 Tatyana A Rand  94 Lucie Raymond  65 Benoît Ricci  90 Chris Sargent  8 Jean-Pierre Sarthou  95 Julia Saulais  65 Jessica Schäckermann  96 Nick P Schmidt  82 Gudrun Schneider  4 Christof Schüepp  91 Frances S Sivakoff  97 Henrik G Smith  98 Kaitlin Stack Whitney  99 Sonja Stutz  100 Zsofia Szendrei  59 Mayura B Takada  101 Hisatomo Taki  102 Giovanni Tamburini  13 Linda J Thomson  103 Yann Tricault  104 Noelline Tsafack  105 Matthias Tschumi  20 Muriel Valantin-Morison  106 Mai Van Trinh  107 Wopke van der Werf  108 Kerri T Vierling  109 Ben P Werling  110 Jennifer B Wickens  49 Victoria J Wickens  49 Ben A Woodcock  92 Kris Wyckhuys  111   112 Haijun Xiao  113 Mika Yasuda  114 Akira Yoshioka  115 Yi Zou  116
Affiliations

Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

Daniel S Karp et al. Proc Natl Acad Sci U S A. .

Abstract

The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.

Keywords: agroecology; biodiversity; biological control; ecosystem services; natural enemies.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1.
Fig. 1.
Map of study locations. We collected pest-control data from 132 studies across 6,759 sites and 31 countries. Pest-control data included abundances of dominant pests, all pests, and natural enemies (black dots; 181 responses), pest and predator activity data from crop-damage surveys, sentinel pest experiments, and exclosure experiments (cyan dots; 125 responses), and yield data (red dots; 53 responses).
Fig. 2.
Fig. 2.
Landscape effects on pest-control variables. After selecting the most predictive model for each pest-control response (N = 367) and redefining land-cover variables as natural (forest, grassland, and scrubland; green bars) versus crop (annual and perennial; orange bars), we tallied the number of pest-control responses for which models had either positive (solid), negative (diagonal hashed), or mixed (horizontal) estimates of the effect of each landscape predictor. Panels represent the seven pest-control variables, including abundance (A) and activity (B and C) of natural enemies; abundance (D and E) and activity (F) of pests; and crop yields (G). χ2 tests indicated that pest-control response variables showed heterogeneous patterns of association with the extent of surrounding natural habitat and cropland—with roughly equivalent numbers of pest-control responses having models with positive and negative effects (all P > 0.05).
Fig. 3.
Fig. 3.
Explanatory power of landscape pest-control models. After selecting the most predictive spatial scale (Methods), model predictions were correlated with observed data. Gray dots are both Pearson correlations between model predictions and observed data and R2 values (square of Pearson’s r). Filled circles and empty circles indicate significant (P < 0.05) and nonsignificant correlations, respectively. Black dots indicate the mean correlation across all datasets between observed and predicted values. Black lines correspond to 95% confidence intervals.
Fig. 4.
Fig. 4.
Testing landscape models. (Top) Correlating average predictions across all possible landscape models (Methods) against independent field observations resulted in low predictive power. Each gray circle is the observed correlation for one dataset (set of field observations); filled circles are significant correlations (P < 0.05). Black circles are average correlations across all tested datasets; lines are confidence intervals. (Bottom) More selective application of models to independent field observations caused correlations to be on average positive for all pest-control variables except pest damage and crop yields (asterisks indicate P < 0.05). Specifically, this panel demonstrates that predictive power was higher when a more selective subset of models was applied to the independent field observations, subject to several of the following constraints: (i) Field observations and the data from which models were constructed (model data) shared the same crop; (ii) the same land-cover variables were present in model data and field observations; (iii) landscape values in field observations were within the range of landscape values in the model data; and (iv) models explained significant variation in their own data (r > 0.25). Dominant pests, pest damage, and crop yields were subject to constraints (i) and (ii); all pests to (i), (ii), and (iii); sentinel experiments to (i), (ii), and (iv); and all enemies and cage experiments to (i), (ii), (iii), and (iv).

Comment in

References

    1. Kennedy CM, et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett. 2013;16:584–599. - PubMed
    1. Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc Biol Sci. 2006;273:1715–1727. - PMC - PubMed
    1. Veres A, Petit S, Conord C, Lavigne C. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric Ecosyst Environ. 2013;160:110–117.
    1. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett. 2011;14:922–932. - PubMed
    1. Rusch A, et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric Ecosyst Environ. 2016;221:198–204.

Publication types